
Data 101: Data Engineering
Midterm Exam

Exam Reference Packet
UC Berkeley, Fall 2024

October 16, 2024

Name:

Email: @berkeley.edu

Student ID:

Instructions
Do not open this exam reference packet until you are instructed to do so.

Make sure to write your name, email, and SID on this cover page.

Page 1 of 10

Data 101 Fall 2024 Midterm Exam Exam Reference Packet

1 Library Database Description
This schema is a simplified version of a local library system. Broadly, it tracks books which are
stored at various locations. Users can check out books from a specific location.

• A library is made of several locations, each of which has its own set of books.

• Users can check out and return books from a specific location. A book which is actively
checked out will have a checkout_date and a due_date, but a NULL return_date. All
three of these attributes are the SQL DATE type.

• Each book has an ISBN associated with it. ISBNs are internationally unique numbers that
are assigned to books by a publisher. We will assume that all ISBNs are 13 digits in the
following format: 978-6-543-21012-3.

• The type SERIAL is an auto-incrementing (unique) integer (starting from 1) that Post-
greSQL manages for each record which is inserted into the table.

• Wehave intentionally removed all primary keys, foreign keys, and indexes from this schema.

CREATE TABLE locations (
id SERIAL,
name TEXT NOT NULL,
address TEXT NOT NULL,
phone_number VARCHAR(20)

);

CREATE TABLE users (
id SERIAL,
first_name TEXT NOT NULL,
last_name TEXT NOT NULL,
email TEXT UNIQUE NOT NULL,
phone_number VARCHAR(20),
joined_date DATE
DEFAULT CURRENT_DATE

);

CREATE TABLE books (
id SERIAL,
title TEXT NOT NULL,
author TEXT NOT NULL,
isbn TEXT UNIQUE NOT NULL,
publication_year INTEGER

);

CREATE TABLE book_locations (
id SERIAL,
book_id INTEGER,
location_id INTEGER,
total_copies INTEGER NOT NULL,
available_copies INTEGER NOT NULL

);

CREATE TABLE checkouts (
id SERIAL,
user_id INTEGER,
book_id INTEGER,
location_id INTEGER,
checkout_date DATE
DEFAULT CURRENT_DATE,

return_date DATE,
due_date DATE NOT NULL

);

Page 1 of 10

Data 101 Fall 2024 Midterm Exam Exam Reference Packet

2 Ed Database Description
We consider a simplified, text-only version of Ed discussion forum for a single Data 101 course.
Users can both start new threads and write comments on existing threads. Users can also make
hearts (i.e., likes or upvotes) on threads or comments within threads.

Table Description Details
users All students and course staff in

the current Data 101 course.
N/A

threads Each thread has an original
post text and corresponding
title.

Thread hearts are the number of hearts (i.e,
likes) on the original post text.

comments Comments are all user text
posts on a thread that are not
the original post text.

Comment hearts are the number of hearts
(i.e., likes) on that single comment.

child_
comments

Parent-child edges of all com-
ment trees in all threads.

A comment tree for Comment C is formed
when other comments are written in reply to
C or (recursively) in reply to a comment in
C’s comment tree. C’s comment tree can be
described by its set of parent-child edges.

Below, Figures 1 and 2a are example threads. Figure 2b shows the comment tree for Comment ID
22 (from Figure 2a); note 21 is a parent and not part of Comment ID 22’s comment tree.

On the next page are the database schema and the corresponding sample tables for these figures.

Figure 2a #200

Wesley

Fig 2a’s original
post text

W

♥
20 Comment …

C

MEGATHREAD

Christy #21
another

A Alex #22

deeper

A Alex #23

comment

C Christy #24

branch

♡ 0

♥ 1

♥ 2

♥ 4

deeper

comment branch

Figure 1 #100

Christy

A post with text

C

Comment …

C

POST

Christy #11
solo

♥ 2

C Christy #12
parent text

W Wesley #13

child text

♥ 5

♥ 3

♡
0

Figure	1 Figure	2a Figure	2b

Page 2 of 10

Data 101 Fall 2024 Midterm Exam Exam Reference Packet

Ed discussion forum database schema:

CREATE TABLE users (
id INTEGER PRIMARY KEY,
email TEXT,
display_name TEXT,
hearts_made INTEGER

);

CREATE TABLE threads (
id INTEGER PRIMARY KEY,
thread_type TEXT NOT NULL,
hearts INTEGER,
user_id INTEGER
REFERENCES users(id),

title TEXT,
text TEXT

);

CREATE TABLE comments (
id INTEGER PRIMARY KEY,
thread_id INTEGER REFERENCES threads(id),
hearts INTEGER,
user_id INTEGER REFERENCES users(id),
text TEXT

);

CREATE TABLE child_comments (
comment_id INTEGER REFERENCES comments(id),
child_id INTEGER REFERENCES comments(id)

);

Sample tables for the two Ed threads shown on the previous page:

id email display_name hearts_made
9001 wz@. . . Wesley 9
9002 cq@. . . Christy 15
9003 ag@. . . Alex 13

users

id thread_type hearts user_id title text
100 Post 0 9002 Figure 1 A post with text
200 Megathread 20 9001 Figure 2a Fig 2a’s original post text

threads

id thread_id hearts user_id text
11 100 2 9002 solo
12 100 5 9002 parent text
13 100 3 9001 child text
21 200 0 9002 another
22 200 1 9003 deeper
23 200 2 9003 comment
24 200 4 9002 branch

comments

comment_id child_id
12 13
21 22
22 23
22 24

child_comments

Page 3 of 10

Data 101 Fall 2024 Midterm Exam Exam Reference Packet

3 SQL Timestamps
We discuss a few ways (among many) of storing date and time values (“date/time values”) in a
single, combined attribute:

• SQL timestamp: The SQL standard timestamp with time zone datatype, which stores
date/time values relative to the UTC timezone (Coordinated Universal Time, or Greenwich
Mean Time), which is 7 hours ahead of Pacific Daylight Time (PDT). The SQL timestamp
datatype occupies 8 bytes.

• Epoch time: Otherwise known as UNIX Time, epoch time is measured in seconds since
the Unix epoch, or January 1st 1970 UTC (Coordinated Universal Time). Unix times (at
least until the year 2038) can be stored into a 4 byte INTEGER.

• String: A text string that represents the SQL timestamp (UTC) in a standard format. For
simplicity, we use the format used to display SQL timestamps, occupying 20 bytes.

• July 7, 2018 3:09:11pm PDT is July 7, 2018, 10:09:11pm UTC is 1531001351 in epoch time is
'2018-07-07 22:09:11'.

The below psql extended output demonstrates how to convert between the timestamp, epoch
time, and string (TEXT) representations of the date/time value July 7th, 2018, 10:09:11pm UTC.

WITH example(ts_orig, epoch_orig, text_orig) AS (
VALUES ('2018-07-07 22:09:11'::TIMESTAMP, 1531001351,

'2018-07-07 22:09:11')
)
SELECT

ts_orig,
EXTRACT('EPOCH' FROM ts_orig) AS ts_to_epoch,
epoch_orig,
TO_TIMESTAMP(epoch_orig) AT TIME ZONE 'UTC' AS epoch_to_ts_utc,
TO_TIMESTAMP(epoch_orig) AT TIME ZONE 'PDT' AS epoch_to_ts_pdt,
text_orig,
text_orig::TIMESTAMP AS text_to_ts_utc,
EXTRACT('EPOCH' FROM text_orig::TIMESTAMP) AS text_to_epoch

FROM example;

-[RECORD 1]---+--------------------
ts_orig | 2018-07-07 22:09:11
ts_to_epoch | 1531001351.000000
epoch_orig | 1531001351
epoch_to_ts_utc | 2018-07-07 22:09:11
epoch_to_ts_pdt | 2018-07-07 15:09:11
text_orig | 2018-07-07 22:09:11
text_to_ts | 2018-07-07 22:09:11
text_to_epoch | 1531001351.000000

Page 4 of 10

Data 101 Fall 2024 Midterm Exam Exam Reference Packet

4 (Excerpt) PostgreSQL Recursive Queries
The optional RECURSIVE modifier changes WITH from
a mere syntactic convenience into a feature that accom-
plishes things not otherwise possible in standard SQL.
Using RECURSIVE, a WITH query can refer to its own
output.
A very simple example is this query to sum the integers
from 1 through 100:

WITH RECURSIVE t(n) AS (
VALUES (1)

UNION ALL
SELECT n+1 FROM t
WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or
UNION ALL), then a recursive term, where only the recursive term can contain a reference to
the query’s own output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows.
Include all remaining rows in the result of the recursive query, and also place them in a
temporary working table.

2. So long as the working table is not empty, repeat these steps:

(a) Evaluate the recursive term, substituting the current contents of the working table for
the recursive self-reference. For UNION (but not UNION ALL), discard duplicate rows
and rows that duplicate any previous result row. Include all remaining rows in the
result of the recursive query, and also place them in a temporary intermediate table.

(b) Replace the contents of the working table with the contents of the intermediate table,
then empty the intermediate table.

In the example above, the working table has just a single row in each step, and it takes on the
values from 1 through 100 in successive steps. In the 100th step, there is no output because of the
WHERE clause, and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful
example is this query to find all the direct and indirect sub-parts of a product, given only a table
that shows immediate inclusions:

WITH RECURSIVE included_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = 'our_product'

UNION ALL
SELECT p.sub_part, p.part, p.quantity * pr.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part

)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part;

Page 5 of 10

Data 101 Fall 2024 Midterm Exam Exam Reference Packet

5 PostgreSQL Reference
[WITH with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]

[* | expression [[AS] output_name] [, ...]]
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY [ALL | DISTINCT] grouping_element [, ...]]
[HAVING condition]
[WINDOW window_name AS (window_definition) [, ...]]
[{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
[ORDER BY expression [ASC | DESC | USING operator]

[NULLS { FIRST | LAST }] [, ...]]
[LIMIT { count | ALL }]
[OFFSET start]

where from_item can be one of:

table_name [*] [[AS] alias [(column_alias [, ...])]]
[TABLESAMPLE sampling_method (argument [, ...])]

[LATERAL] (select) [[AS] alias [(column_alias [, ...])]]
with_query_name [[AS] alias [(column_alias [, ...])]]
from_item join_type from_item { ON join_condition |

USING (join_column [, ...])
[AS join_using_alias] }

from_item NATURAL join_type from_item
from_item CROSS JOIN from_item

and grouping_element can be one of: expression or (expression [, ...])

and with_query is:
with_query_name [(column_name [, ...])] AS (SELECT | VALUES)

5.1 Window Functions
<window or agg_func> OVER (
[PARTITION BY <...>] [ORDER BY <...>] [RANGE BETWEEN range_start AND range_end])

where <window or agg_func> can be one of:

aggregate functions: AVG, SUM, etc., or:
RANK() -- ordering within the window
LEAD/LAG(exp, n) -- value of exp that is n ahead/behind in the window
PERCENT_RANK() -- relative rank of current row as a %
NTH_VALUE(exp, n) -- value of exp @ position n in window

and range_start and range_end can be one of:
UNBOUNDED PRECEDING, UNBOUNDED FOLLOWING, CURRENT ROW,
offset PRECEDING, offset FOLLOWING

Page 6 of 10

Data 101 Fall 2024 Midterm Exam Exam Reference Packet

5.2 Example Queries
SELECT id, location, age,
AVG(age) OVER () AS avg_age

FROM residents;

SELECT id, location, age,
SUM(age) OVER (
PARTITION BY location
ORDER BY age
RANGE BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) AS a_sum

FROM residents
ORDER BY location, age;

CREATE TABLE <relation name> AS (<subquery>);
CREATE TABLE zips (

location VARCHAR(20) NOT NULL,
zipcode INTEGER,
in_district BOOLEAN DEFAULT False,
PRIMARY KEY (location),
UNIQUE (location, zipcode)

);

DROP TABLE [IF EXISTS] <relation name>;
ALTER TABLE zips

ADD avg_pop REAL,
DROP in_district;

CREATE TABLE cast_info (
person_id INTEGER,
movie_id INTEGER,
FOREIGN KEY (person_id) REFERENCES actors (id)
ON DELETE SET NULL ON UPDATE CASCADE,

FOREIGN KEY (movie_id) REFERENCES movies(id) ON DELETE SET NULL
);

Page 7 of 10

Data 101 Fall 2024 Midterm Exam Exam Reference Packet

6 PostgreSQL String Utilities
String utility functions:

• string || string→ text (concatenation)

• SUBSTRING(string FROM start)→ text

• SUBSTRING(string FROM re_pattern)→ text

• SUBSTR(string, count)→ text

• REPLACE(source, pattern, replacement)→ text
In REPLACE pattern operates similar to LIKE, not a regular expression.

• REGEXP_REPLACE(source, re_pattern, replacement, flags)→ text
Note: flags must be 'g' to execute a global match replacing all instances.

• SQL supports matching strings using two different types of pattern matching: SQL-style
LIKE patterns, and POSIX Regular Expressions.

• string LIKE pattern→ boolean

• string ~ re_pattern→ boolean

Examples:

'Hello' || 'World' → 'HelloWorld'
STRPOS('Hello', 'el') → 2
SUBSTRING('Thomas' FROM 3) → 'omas'
SUBSTRING('Hello', 2, 3) → 'ell'
SUBSTR('Hello World', 7) → ‘World’

See the next page for Section 7: SQL Pattern Matching, which includes regular expressions.

Page 8 of 10

Data 101 Fall 2024 Midterm Exam Exam Reference Packet

7 SQL Pattern Matching

7.1 LIKE Patterns
SQL’s LIKE, and REPLACE functions operate using a simplified pattern syntax.

'abc' LIKE 'abc' → true 'abc' LIKE '_b_' → true
'abc' LIKE 'a%' → true 'abc' LIKE 'c' → false
REPLACE('Hello World', 'l', 'L') → 'HeLLo WorLd'

If pattern does not contain percent signs (%) or underscores (_), then the pattern only represents
the string itself; in that case LIKE acts like the equals operator. An underscore in pattern stands for
(matches) any single character; a percent sign matches any sequence of zero or more characters.

7.2 Regular Expressions
This is an abbreviated reference which may prove helpful. The functions ~, REGEXP_REPLACE,
and SUBSTRING accept re_pattern arguments which are regular expressions.

Escapes Shorthand used in a match
\d matches any digit
\s matches any white space character
\w matches any word character

Constraints Used at the beginning or end of a match
^ matches at the beginning of the string
$ matches at the end of the string

Quantifier Used after a match section
* a sequence of 0 or more matches of the atom
+ a sequence of 1 or more matches of the atom
? a sequence of 0 or 1 matches of the atom
{m} a sequence of exactly m matches of the atom
{m,} a sequence of m or more matches of the atom
{m,n} a sequence of m through n (inclusive) matches of the atom; m cannot exceed n

'abcd' ~ 'a.c' → true dot matches any character
'abcd' ~ 'a.*d' → true * repeats the preceding pattern item
'abcd' ~ '(b|x)' → true | means OR, parentheses group
'abcd' ~ '^a' → true ^ anchors to start of string
'abcd' ~ '^(b|c)' → false
substring('foobar' from 'o.b') → 'oob'
substring('foobar' from 'o(.)b') → 'o'
substring('Thomas' from '...\$') → 'mas'
regexp_replace('foobarbaz', 'b..', 'X') → 'fooXbaz'
regexp_replace('foobarbaz', 'b..', 'X', 'g') → 'fooXX'
regexp_replace('Hello World', '[aeiou]', '-', 'g') → 'H-ll- W-rld'

Page 9 of 10

