
Data 101: Data Engineering
Midterm Exam

UC Berkeley, Fall 2024
October 16, 2024

Name:

Email: @berkeley.edu

Student ID:

Examination room:

Name of the student on your left:

Name of the student on your right:

Instructions
Do not open the examination until you are instructed to do so.

This exam consists of 75 points spread over 4 questions (including the Honor Code), and
must be completed in the 110-minute time period onOctober 16, 2024, 7:10pm– 9:00pmunless
you have pre-approved accommodations otherwise.
For multiple-choice questions, select one choice for circular bubble options, and select all
choices that apply for box bubble options. In either case, please indicate your answer(s) by
fully shading in the corresponding circle/box.
Make sure to write your SID on each page to ensure that your exam is graded.

Honor Code [1 pt]

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for
others. I am the person whose name is on the exam, and I completed this exam in accordance
with the Honor Code.

Signature:

Page 1 of 16

Data 101 Fall 2024 Midterm Exam SID:

Chapter 1: I didn’t sign up for all this reading! [28 pt]

We explore a simplified version of a local library system. Broadly, libraries track books which are
stored at various locations. Our library database stores data about the books, such as their titles,
authors, and ISBNs (a unique number for each each book). Note: The schema for this question
is included in the exam reference packet, but you do not need to review it until Question 1.4.

1.1. The ISBN of each book is a unique 13 digit number, formatted as 978-6-543-21012-3. The
books table contains an attribute called isbnwhich is currently a variable length string (the
TEXT type).

i. [1 pt] If we store the ISBN as a string, how many bytes would we need to store this
value, including the 4 dashes (-)? Round up to the nearest multiple of 4 bytes, e.g.,
9 bytes would round up to 12.

________ bytes

ii. [1 pt] Suppose that we did not need the fancy formatting and instead used a numeric
data type to store the ISBNs. Which numeric data type would be most appropriate?
Consider that 1013 is much larger than 2

32, and 2
10
= 1024 ≈ 10

3.

○ int16 ○ int32 ○ int64 ○ float32 ○ double64

iii. [1 pt] Given your responses above, which would be the most appropriate data type
(strings or numeric) to choose for the isbn attribute? Fill in the appropriate bubble
and justify your choice in one sentence.

A○ string /○ numeric data type is more appropriate for isbn.

iv. [2 pt] Complete the function that converts the ISBN string to an INTEGER data type.
You can assume that all ISBNs follow the form: XXX-X-XXX-XXXXX-X where each X
is a digit, stored in a column called isbn, e.g., '978-6-543-21012-3'. You conversion
should ensure that '978-6-543-21012-3' is coerced to 9786543210123.

Notes: You should use SUBSTRING, REPLACE, REGEXP_REPLACE, SUBSTR or other valid
string manipulation functions. It may be helpful to review the exam reference packet
(Sections 6–7) for string functions. Recall that ::dtype casts to data type dtype.

::INTEGER

Page 2 of 16

Data 101 Fall 2024 Midterm Exam SID:

For the next two parts, consider this abbreviated schema for our library. The users and checkouts
tables respectively describe who is using the library and which books they have currently or pre-
viously checked out.

users(id, first_name, last_name, email, phone_number, joined_date)
checkouts(id, user_id, book_id, location_id,

checkout_date, return_date, due_date)

Users can check out and return books from a specific location. A book which is actively checked
out will have a checkout_date and a due_date, but a NULL return_date. All three of these
attributes are the SQL DATE type.

1.2. Write a query that will return the users who have 3 or more active checkouts, sorted by
the user who has the most currently checked out books. Your query should compute the user
(user_id, first_name, last_name), n_active_checkouts (the total number of books the
user currently has checked out), and next_due_date (the earliest due date for any book that
the user currently has checked out; technically this could be in the past for an overdue book).
Example output:

user_id first_name last_name n_active_checkouts next_due_date
1 Jonathan Doe 4 2024-09-15
2 Rebecca Malik 4 2024-09-16
3 CW Cano 3 2024-09-17

i. [2 pt] First, write a CTE active_checkouts that returns the rows representing cur-
rently checked out books.

WITH active_checkouts AS (

SELECT * FROM checkouts

WHERE
) ...;

Page 3 of 16

Data 101 Fall 2024 Midterm Exam SID:

ii. [7 pt] Next, complete the rest of the query. Assume that your CTE from the previous
part is correct. You do not need to worry about breaking ties in the ordering.

Note: You may not need all blanks.

WITH active_checkouts AS (...)
SELECT
u.id AS user_id,

FROM users u

JOIN active_checkouts ac ON

GROUP BY

HAVING

ORDER BY ;

Page 4 of 16

Data 101 Fall 2024 Midterm Exam SID:

1.3. [8 pt] We’d now like to determine the most popular days of the week each book is checked
out. Now, consider the books table, in addition to the previous checkouts table.

books(id, title, author, isbn, publication_year)
checkouts(id, user_id, book_id, location_id,

checkout_date, return_date, due_date)

Complete the following query to show each book and its rank, by the number of checkouts
on each day of week the book was checked out. The table should be sorted by the number
of checkouts (largest first) on a given day of week and include the following columns:

• id and title of the book
• dow, a numeric day of the week the book was checked out.

– dow is a number representing the day of week (0 to 6) that a book was checked out.
EXTRACT(DOW FROM ‘2024-10-16’) will return 3 for Wednesday.

• num_checkouts, the number of times the book was checked out on the day dow
• ranking, the rank of the book by number of checkouts, where 1 means most checkouts
on the day dow.

id title dow num_checkouts ranking
9 Brave New World 3 2 1
12 The Grapes of . . . 1 2 1

. . .
13 The Adventures 0 1 1
18 Don Quixote 1 1 2
2 To Kill a Mocki. . . 1 1 2

Note: You may not need all blanks.

SELECT b.id, b.title AS title,

EXTRACT(DOW FROM c.checkout_date) AS dow,

AS num_checkouts,

OVER (

) AS ranking
FROM books b

JOIN

GROUP BY

ORDER BY ;

Page 5 of 16

Data 101 Fall 2024 Midterm Exam SID:

For the final few parts of this question, consider this expanded schema for our library. The books,
checkouts, and users tables are included again for clarity.

locations(id, name, address, phone_number)
book_locations(id, book_id, location_id,
total_copies, available_copies)

books(id, title, author, isbn, publication_year)
checkouts(id, user_id, book_id, location_id,

checkout_date, return_date, due_date)
users(id, first_name, last_name, email, phone_number, joined_date)

Note: Please read the full database schema in the exam reference packet (Sec. 1) before
continuing. It includes information about the data types and constraints. We have intentionally
removed all primary key, foreign key, and indexes from this schema.

Considering the provided schema, answer the questions below. Note: a.b is column b on table a.

1.4. [2 pt] Which columns could be marked as primary keys? Select all that apply.

□ A. users.id

□ B. users.name

□ C. books.id

□ D. books.isbn

□ E. book_locations.book_id

□ F. checkouts.id

□ G. checkouts.user_id

□ H. None of the above
1.5. [2 pt] Which columns could be marked as foreign keys? Select all that apply.

□ A. users.id

□ B. users.name

□ C. books.id

□ D. books.isbn

□ E. book_locations.book_id

□ F. checkouts.id

□ G. checkouts.user_id

□ H. None of the above
1.6. [2 pt] Consider these hypothetical scenarios that make use of the library database. What

additional columns should we create an index for? Assume we have correctly made an
index for all columns that are a primary key. For each scenario write the appropriate column
name as table_name.column_name.

i. Searching for books by a title

ii. Easily show a user all the books they currently have
checked out

Page 6 of 16

Data 101 Fall 2024 Midterm Exam SID:

Chapter 2: Timestamping Reviews [20 pt]

Let’s consider how to store combined date and time values (or simply, “date/time values”) in two
choices of attributes: the 8-byte SQL TIMESTAMP data type, in Coordinated Universal Time (UTC),
and a 4-byte epoch time INTEGER data type. Note: Please see the exam reference packet (Sec.
3) for relevant SQL TIMESTAMP functions and conversions.

Your developer teammate has designed and implemented the reviews_epoch table below for
storing user reviews of businesses on Yelp, a social networking business review site. They store
created_at as a 4-byte integer, representing the epoch time at which the review was written.

CREATE TABLE reviews_epoch (
review_id CHAR(22) PRIMARY KEY,
user_id CHAR(22), business_id CHAR(22), stars INTEGER,
created_at INTEGER, /* epoch time */
text TEXT

);

review_id user_id business_id stars created_at text
SZp6. . . wl5f. . . jBpF. . . 4 1451611911 . . .
9USm. . . rEYm. . . 5EpF. . . 5 1510870342 . . .
5DbC. . . w9R6. . . jkGQ. . . 1 1451611911 . . .

Sample rows of reviews_epoch

2.1. [3 pt] Convert the epoch times above
to SQL timestamps by constructing the
dt_conversions view with two columns:
each epoch time in created_at and its corre-
sponding conversion to a SQL timestamp (UTC).
Do not include duplicates.

epoch timestamp_utc
1451611911 2016-01-01 01:31:51
1510870342 2017-11-16 22:12:22

(output for sample rows above)

Note: Use the specific SQL TIMESTAMP functions provided in the exam reference packet
(Sec. 3). You may not need all blanks.

CREATE VIEW dt_conversions AS (

SELECT

FROM reviews_epoch

);

Page 7 of 16

Data 101 Fall 2024 Midterm Exam SID:

Your teammate argues that epoch times are more efficient than any other representation for
date/time—for both storage and query performance reasons. Let’s explore this claim.

2.2. [1 pt] Suppose there are 7 million records in reviews_epoch. How much storage does it
take to store the table where date/time values are SQL timestamps, compared to epoch times?
Below, fill in the bubble and blank that make the statement true. Additionally, show your
work for computing storage size inmegabytes (MB).

Storing the created_at column as SQL timestamps takes a total of MB
○more /○ less space than the equivalent column as 4-byte integers.

2.3. [4 pt] Your teammate ran CREATE INDEX epoch_idx ON reviews_epoch(created_at);
then ran the below query, which finds the reviews that were written on January 19, 2022:

SELECT * FROM reviews_epoch
WHERE created_at >= EXTRACT('EPOCH' FROM '2022-01-19'::TIMESTAMP)

AND created_at < EXTRACT('EPOCH' FROM '2022-01-20'::TIMESTAMP);

Use the below EXPLAIN ANALYZE output of this query to answer the following questions.

QUERY PLAN
--
Gather (cost=1000.00..170284.29 rows=34950 width=93)

(actual time=74.018..1231.257 rows=1190 loops=1)
Workers Planned: 2, Workers Launched: 2
-> Parallel Seq Scan on reviews_epoch

(cost=0.00..165789.29 rows=14562 width=93)
(actual time=66.666..1222.807 rows=397 loops=3)
Filter: (((created_at)::numeric >= 1642550400.000000

AND ((created_at)::numeric < 1642636800.000000))
Rows Removed by Filter: 2329603

Planning Time: 0.145 ms Execution Time: 1231.320 ms

i. What kind(s) of table scan does the optimizer use?
Select all that apply.

□ Sequential Scan
□ Heap Scan
□ Index Scan

ii. What is the name of the index used by the optimizer?
Write N/A if not applicable.

iii. What is the actual number of rows in the result?

iv. Are the rows in the result sorted by the created_at
attribute?

○ Yes
○ Not necessarily

Page 8 of 16

Data 101 Fall 2024 Midterm Exam SID:

Given the above analysis, you wonder how a table that uses SQL timestamps may compare.

2.4. [5 pt] Fill in the below lines to create the reviews_ts table as a copy of reviews_epoch
with all date/time epoch times converted to SQL timestamps (UTC). Assume you have access
to the dt_conversions view from Question 2.1. Finally, specify the equivalent primary key
constraint on review_id.

Note: You may not need all blanks.

CREATE reviews_ts AS (

SELECT

review_id, user_id, business_id, stars, text,

AS created_at

FROM reviews_epoch AS r, dt_conversions AS dtc

WHERE

);

ALTER review_ts

ADD PRIMARY KEY ();

Page 9 of 16

Data 101 Fall 2024 Midterm Exam SID:

2.5. [4 pt] After constructing an index on this new SQL timestamp column, you revisit query per-
formance for the task in Question 2.3. You write a query that finds the reviews in review_ts
that were written on January 19, 2022:

SELECT * FROM reviews_ts
WHERE created_at >= '2022-01-19 00:00:00'::TIMESTAMP

AND created_at < '2022-01-20 00:00:00'::TIMESTAMP;

Use the below EXPLAIN ANALYZE output of this query to answer the following questions.

QUERY PLAN
--
Bitmap Heap Scan on reviews_ts (cost=30.66..5081.32 rows=1388 width=85)

(actual time=1.214..124.090 rows=1190 loops=1)
Recheck Cond:

((created_at >= '2022-01-19 00:00:00'::TIMESTAMP)
AND (created_at < '2022-01-20 00:00:00'::TIMESTAMP))

Heap Blocks: exact=1169
-> Bitmap Index Scan on created_at_ts_idx

(cost=0.00..30.31 rows=1388 width=0)
(actual time=0.831..0.832 rows=1190 loops=1)
Index Cond: ((created_at >= '2022-01-19 00:00:00'::TIMESTAMP)

AND (created_at < '2022-01-20 00:00:00'::TIMESTAMP))
Planning Time: 3.428 ms Execution Time: 124.200 ms

i. What kind(s) of table scans does the optimizer use?
Select all that apply.

□ Sequential Scan
□ Heap Scan
□ Index Scan

ii. What is the name of the index used by the optimizer?
Write N/A if not applicable.

iii. What is the actual number of rows in the result?

iv. Are the rows in the result sorted by the created_at
attribute?

○ Yes
○ Not necessarily

2.6. [1 pt] Is the query in Question 2.3 faster or slower than the query in Question 2.5?

○ Faster ○ Slower ○ Comparable

2.7. [2 pt] Without mentioning the storage or query performance reasons above, list one addi-
tional reason to prefer the SQL timestamp data type over the epoch time integer.

Page 10 of 16

Data 101 Fall 2024 Midterm Exam SID:

Chapter 3: Ed Discussion, but for Algebra [14 pt]

Consider a simplified version of Ed Discussion, where users start new threads, write comments on
existing threads, and make hearts (i.e., likes or upvotes) on threads or comments within threads.
We share the relevant parts of the database schema below; please see the exam reference packet
(Sec. 2) for the full description.

users(id, email, display_name, hearts_made)
threads(id, thread_type, hearts, user_id, title, text)
comments(id, thread_id, hearts, user_id)

3.1. Suppose we write the below query:

SELECT display_name AS user_name,
COUNT(*) AS threads_posted

FROM threads, users
WHERE users.id = threads.user_id
GROUP BY display_name;

The query optimizer then produces the execu-
tion plan on the right, according to SQL query
semantics. Fill in the blanks below.

[I]

[II]

[III]

threads users

i. [3 pt] What extended relational operators should be in the nodes marked [I], [II], and
[III]?

[I] ○ 𝜋 ○ 𝜌 ○ 𝜎 ○ ⋈ ○ × ○ 𝛾

[II] ○ 𝜋 ○ 𝜌 ○ 𝜎 ○ ⋈ ○ × ○ 𝛾

[III] ○ 𝜋 ○ 𝜌 ○ 𝜎 ○ ⋈ ○ × ○ 𝛾

ii. [3 pt] For each relational operator you selected above, write its respective subscript
according to the original SQL query, e.g. join conditions, selected attributes, etc. If there
are no subscripts, write N/A.

[I]

[II]

[III]

Page 11 of 16

Data 101 Fall 2024 Midterm Exam SID:

3.2. Select all relational algebra expressions that satisfy each description.

i. [2 pt] Get the titles of threads that do not have any comments.

□ A. 𝜋title(threads) ∩ 𝜋title(threads ⋈threads.id = thread_id comments)

□ B. 𝜋title(threads) − 𝜋title(threads ⋈threads.id = thread_id comments)

□ C. 𝜋title(threads − threads ⋈threads.id = thread_id comments)

□ D. 𝜋title(threads ⋈threads.id != thread_id comments)
□ E. None of the above

ii. [2 pt] Get the display name of the “original poster” for each thread with more than 5
hearts (ignore comment hearts). An original poster for a thread is the user who started
the thread.

□ A. 𝜋display_name(𝜎hearts>5 (threads ⋈user_id = users.id users))

□ B. 𝜋display_name(𝜎hearts>5 AND user_id = users.id (threads × users))

□ C. 𝜋display_name((𝜎hearts>5(threads) ⋈user_id = users.id users))

□ D. 𝜋display_name((𝜎hearts>5(threads) ⋈ users))
□ E. None of the above

3.3. [4 pt] Consider the following relational algebra expression, where the expression
cond is defined as threads.user_id = users.id AND threads.id = comments.thread_id.

𝛾users.id,threads.id,COUNT(∗)
(
𝜎cond

(
users × 𝜎threads.hearts>0 (threads) × comments

))

What is this relational algebra expression doing? Write one sentence in plain English
using the provided Ed database schema. Do not use any relational algebra terminology.

Note: Please see the exam reference packet (Sec. 2) for the full database schema.

Page 12 of 16

Data 101 Fall 2024 Midterm Exam SID:

Chapter 4: Hearts Branch from Branches [12 pt]

We continue our exploration of a simplified version of Ed Discussion. When comments are writ-
ten in reply to other comments, they create a comment tree. We share the relevant parts of the
database schema below; please see the exam reference packet (Sec. 2) for the full description.

threads(id, thread_type, hearts, user_id, title, text)
comments(id, thread_id, hearts, user_id)
child_comments(comment_id, child_id)

4.1. [1 pt] Each thread must be tagged with a thread_type, which is one of three possible text
strings: Question, Post, and Megathread. Assuming all threads have non-NULL thread
types, what is theoretically theminimumnumber of bits needed to encode (i.e., represent)
the thread_type attribute? Ignore any practical limits of SQL.

○ 1 bit ○ 2 bits ○ 3 bits ○ 8 bits ○ 16 bits

4.2. [3 pt] The below recursive query gets the
comment tree for comment ID 22.

Note: See the exam reference sheet for a
full description of comment trees (Sec. 2)
and an excerpt from the PostgreSQL recursive
query reference (Sec. 4) .

comment_id child_id
12 13
21 22
22 23
22 24

child_comments

comment_id
22
23
24

(query output)

WITH RECURSIVE tree(comment_id) AS (
(SELECT comment_id FROM child_comments WHERE comment_id = 22)
UNION
(SELECT ____(i)____ FROM child_comments
JOIN tree ON child_comments.___(ii)____ = tree.___(iii)___)

)
SELECT * FROM tree;

For each of the blanks above, select the correct option so that running the recursive query
on the example child_comments table produces the corresponding output table.

i. ○ id ○ comment_id ○ child_id

ii. ○ id ○ comment_id ○ child_id

iii. ○ id ○ comment_id ○ child_id

Page 13 of 16

Data 101 Fall 2024 Midterm Exam SID:

4.3. [8 pt] Users can make hearts (i.e., likes or upvotes) on threads and comments. Write a query
that computes, for each thread ID, the total number of hearts made on that thread, counting
both the hearts on the original post text and hearts on all comments on the thread. An
example output with sample tables is shown below.

Note: You do not need to/should not write a recursive query. You may not need all blanks.

id thread_id hearts . . .
11 100 5 . . .
12 100 3 . . .
13 100 2 . . .
21 200 0 . . .
22 200 1 . . .
23 200 2 . . .
24 200 4 . . .

comments

id thread_type hearts . . .
100 . . . 0 . . .
200 . . . 20 . . .

threads

thread_id sum
200 27
100 10

(query output)

WITH thread_hearts AS (

(SELECT

)

UNION ALL

(SELECT

)
)

SELECT

FROM thread_hearts

;

Page 14 of 16

Data 101 Fall 2024 Midterm Exam SID:

Chapter 5: Congratulations! [0 pt]

Congratulations! You have completed this exam.

• Make sure that you have written your Student ID number on every other page of the exam.
You may lose points on pages where you have not done so.

• Also ensure that you have signed the Honor Code on the cover page of the exam for 1 point.

• If more than 10 minutes remain in the exam period, you may hand in the exam and the
reference packet and leave.

• If ≤ 10 minutes remain, please sit quietly until the exam concludes.

[Optional, 0 pts] Use this page to design a new Data 101 course logo!

Page 15 of 16

Data 101 Fall 2024 Midterm Exam SID:

This page is intentionally left blank.

Page 16 of 16

