
Data 101: Data Engineering
Final Exam

Exam Reference Packet
UC Berkeley, Fall 2024
December 17, 2024

Name:

Email: @berkeley.edu

Student ID:

Instructions
Do not open this exam reference packet until you are instructed to do so.

Make sure to write your name, email, and SID on this cover page.

Page 0 of 13

Data 101 Fall 2024 Final Exam Exam Reference Packet

1 FEMA Database Description
The United States Federal Emergency Management Agency (FEMA) maintains OpenFEMA, an
open-source database “in support of FEMA’s mission to help people before, during, and after
disasters.” We show sample records of two tables below.

incidents contains incident records for all federally declared disasters.

• id TEXT: Record ID.
• disaster_num INTEGER: Sequentially assigned number used to designate an event or in-
cident declared as a disaster.

• incident_type TEXT: The primary or official type of incident, e.g., fire, flood, etc.
• begin_date DATE: Date the incident began.
• end_date DATE: Date the incident ended.
• fips_state CHAR(2): FIPS two-digit numeric code used to identify the United States, the
District of Columbia, US territories, outlying areas of the US and freely associated states.
FIPS codes range from 00 to 99.

• declaration_title TEXT Title for the disaster.

id disaster incident begin_date end_date fips_state declaration_title
_num _type

fbb566 4829 Hurricane 2024-09-24 45 Hurricane Helene
2b7c14 4837 Tropical

Storm
2024-09-15 2024-09-19 37 Potential Tropical

Cyclone Eight
7cae4e 5534 Fire 2024-09-01 41 Rail Ridge Fire
30962a 5534 Fire 2024-09-01 41 Rail Ridge Fire
0a7d78 4037 Hurricane 2011-08-24 2011-08-30 10 Hurricane Irene

grants contains financial assistance information about disasters.

• id TEXT: Unique ID assigned to the record.
• disaster_num INTEGER: Sequentially assigned number used to designate an event or in-
cident declared as a disaster.

• ia_approved_num INTEGER: The number of disaster assistance applications that were ap-
proved for Individual Assistance (IA).

• ia_updated DATE: The date the Individual Assistance (IA) data was updated.

[Exam clarification]: The ia_approved_num value for record ID 20fc79 should be 1, not 0.

id disaster_num ia_approved_num ia_updated
bd0ea1 4037 272 2024-12-12
44230e 4829 224337 2024-12-11
20fc79 5534 1 2024-12-12

Page 1 of 13

Data 101 Fall 2024 Final Exam Exam Reference Packet

2 Yelp Database Description
The Yelp dataset contains users, and businesses which are each collections of JSON docu-
ments. Here we’ve shown example documents which also include a default _id key from Mon-
goDB.

Note: Compared to the dataset used in project 4, we have adapted the friends, elite, and
categories fields to be native lists (as opposed to comas-separated string values).

2.1 A user
{
"_id": ObjectId("..."),
"user_id": "kBBwlCcbL1s4NVK3g",
"name": "Jane",
"review_count": 1220,
"yelping_since": "2005-03-14",
"useful": 15038,
"funny": 10030,
"cool": 11291,
"elite": [2006, ..., 2013, 2014],
"friends": ["xBDpTUbai0DXrvxCe3X16Q", ...,
"gsiJiB8MGewErmvQIvnGxw"],

"fans": 1357,
"average_stars": 3.85,
"compliment_hot": 1710,
"compliment_more": 163,
"compliment_profile": 190,
"compliment_cute": 361,
"compliment_list": 147,
"compliment_note": 1212,
"compliment_plain": 5691,
"compliment_cool": 2541,
"compliment_funny": 2541,
"compliment_writer": 815,
"compliment_photos": 323

}

2.2 A business
{
"_id": ObjectId("..."),
"business_id": "2HFDym3zjuRg0shjw",
"name": "Oskar Blues Taproom",
"address": "921 Pearl St",
"city": "Boulder",
"state": "CO",
"postal_code": "80302",
"latitude": 40.0175444,
"longitude": -105.2833481,
"stars": 4.0,
"review_count": 86,
"is_open": 1,
"attributes": {
"RestaurantsTableService": "True",
"OutdoorSeating": "True",
...
"BusinessAcceptsBitcoin": "False",
"RestaurantsPriceRange2": "2",
"RestaurantsAttire": ""casual"",
"RestaurantsDelivery": "None"

},
"categories": ["Gastropubs", ...,
"Restaurants", "Breweries"],

"hours": {
"Monday": "11:00-23:00",
"Tuesday": "11:00-23:00",
"Wednesday": "11:00-23:00",
"Thursday": "11:00-23:00",
"Friday": "11:00-23:00",
"Saturday": "11:00-23:00",
"Sunday": "11:00-23:00"

}
}

Page 2 of 13

Data 101 Fall 2024 Final Exam Exam Reference Packet

3 Library Database Description
This schema is a simplified version of a local library system. Broadly, it tracks books which are
stored at various locations. Users can check out books from a specific location.

This database is an expanded version of the midterm library schema. You do not need to know
the midterm schema to understand this expanded dataset, but in case it is useful, the differences
are also listed below.

• A library is made of several locations, each of which has its own set of books.

• A book tracks information about a book, but the library stores (and loans out) individual
book_copies of each book. Each book may have 1 or more copies.

• Each book_copy has a status (e.g., "available" or "on loan") and is stored at a specific
location.

• Users can check out and return a book_copy from a specific location. Each checkout is
one entry in the checkouts table, which gets its own id. A book is actively checked out
if there is no entry for the corresponding checkout_id in the book_returns table.

• The type SERIAL is an auto-incrementing (unique) INTEGER (starting from 1) that Post-
greSQL manages for each record which is inserted into the table.

Differences from the midterm schema:

• The checkouts table used to have a column for return_date. This has been changed to
be its own table.

• The midterm schema did not track individual book_copies.

• The midterm schema had a book_locations table, which has essentially been migrated
to the book_copies, which tracks an individual book’s current location.

Page 3 of 13

Data 101 Fall 2024 Final Exam Exam Reference Packet

CREATE TABLE locations (
id SERIAL PRIMARY KEY,
name TEXT NOT NULL,
address TEXT NOT NULL,
phone_number TEXT

);

CREATE TABLE books (
id SERIAL PRIMARY KEY,
title TEXT NOT NULL,
author TEXT NOT NULL,
isbn TEXT NOT NULL,
publication_year INTEGER

);

CREATE TABLE users (
id SERIAL PRIMARY KEY,
first_name TEXT NOT NULL,
last_name TEXT NOT NULL,
email TEXT NOT NULL,
phone_number TEXT,
is_ya BOOLEAN DEFAULT false,
joined_date DATE NOT NULL

);

CREATE TABLE book_copies (
id SERIAL PRIMARY KEY,
book_id INTEGER NOT NULL

REFERENCES books(id),
location_id INTEGER NOT NULL

REFERENCES locations(id),
acquisition_date DATE,
status TEXT DEFAULT 'available'

);

CREATE TABLE checkouts (
id SERIAL PRIMARY KEY,
user_id INTEGER

REFERENCES users(id),
book_copy_id INTEGER

REFERENCES book_copies(id),
location_id INTEGER

REFERENCES locations(id),
checkout_date DATE,
due_date DATE NOT NULL

);

CREATE TABLE book_returns (
id SERIAL PRIMARY KEY,
checkout_id INTEGER

REFERENCES checkouts(id),
location_id INTEGER

REFERENCES locations(id),
return_date DATE NOT NULL

);

Page 4 of 13

Data 101 Fall 2024 Final Exam Exam Reference Packet

4 OLAP in SQL
This page contains excerpts from the official PostgreSQL documentation.

7.2.4. GROUPING SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of grouping
sets. The data selected by the FROM and WHERE clauses is grouped separately by each specified group-
ing set, aggregates computed for each group just as for simple GROUP BY clauses, and then the results
returned. For example:

=> SELECT * FROM items_sold;

brand | size | sales
-------+------+-------
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5

=> SELECT brand, size, sum(sales)
FROM items_sold
GROUP BY GROUPING SETS ((brand), (size), ());
brand | size | sum
-------+------+-----
Foo | | 30
Bar | | 20

| L | 15
| M | 35
| | 50

Each sublist of GROUPING SETS may specify zero or more columns or expressions and is inter-
preted the same way as though it were directly in the GROUP BY clause. An empty grouping set
means that all rows are aggregated down to a single group (which is output even if no input rows
were present), as described above for the case of aggregate functions with no GROUP BY clause.

A shorthand notation is provided for specifying two common types of grouping set. A clause of
the form
ROLLUP (e1, e2, e3, ...) represents the given list of expressions and all prefixes of the
list including the empty list; thus it is equivalent to

GROUPING SETS (
(e1, e2, e3, ...), ... (e1, e2), (e1), ()

)

This is commonly used for analysis over hierarchical data; e.g., total salary by department, di-
vision, and company-wide total. A clause of the form CUBE (e1, e2, ...) represents the
given list and all of its possible subsets (i.e., the power set). Thus CUBE (a, b, c) is equiva-
lent to

GROUPING SETS (
(a, b, c), (a, b), (a, c), (a),
(b, c), (b), (c), ()

)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested
inside a GROUPING SETS clause. If one GROUPING SETS clause is nested inside another, the
effect is the same as if all the elements of the inner clause had been written directly in the outer
clause.

Page 5 of 13

Data 101 Fall 2024 Final Exam Exam Reference Packet

5 SUMIF: Google Sheets
SUMIF(range, criterion, [sum_range]) Returns a conditional sum across a range.

• range - The range which is tested against criterion.

• criterion - The pattern or test to apply to range.

– If range contains numbers (or booleans) to check against, criterion may be either
a string or a number (or boolean). If a number is provided, each cell in range is
checked for equality with criterion. Otherwise, criterion may be a string con-
taining a number (which also checks for equality), or a number prefixed with any of
the following operators: = (checks for equality), > (checks that the range cell value is
greater than the criterion value), or < (checks that the range cell value is less than the
criterion value)

– If range contains text to check against, criterionmust be a string. criterion can
contain wildcards [. . . omitted. . .]. A string criterion must be enclosed in quotation
marks. Each cell in range is then checked against criterion for equality (or match,
if wildcards are used).

• sum_range - The range to be summed, if different from range.

Sample Usage:

• SUMIF(A1:A10,">20")

• SUMIF(A1:A10,"Paid",B1:B10)

Page 6 of 13

Data 101 Fall 2024 Final Exam Exam Reference Packet

6 PostgreSQL Reference
[WITH with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]

[* | expression [[AS] output_name] [, ...]]
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY [ALL | DISTINCT] grouping_element [, ...]]
[HAVING condition]
[WINDOW window_name AS (window_definition) [, ...]]
[{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
[ORDER BY expression [ASC | DESC | USING operator]

[NULLS { FIRST | LAST }] [, ...]]
[LIMIT { count | ALL }]
[OFFSET start]

where from_item can be one of:

table_name [*] [[AS] alias [(column_alias [, ...])]]
[TABLESAMPLE sampling_method (argument [, ...])]

[LATERAL] (select) [[AS] alias [(column_alias [, ...])]]
with_query_name [[AS] alias [(column_alias [, ...])]]
from_item join_type from_item { ON join_condition |

USING (join_column [, ...])
[AS join_using_alias] }

from_item NATURAL join_type from_item
from_item CROSS JOIN from_item

and grouping_element can be one of: expression or (expression [, ...])

and with_query is:
with_query_name [(column_name [, ...])] AS (SELECT | VALUES)

6.1 Window Functions
<window or agg_func> OVER (
[PARTITION BY <...>] [ORDER BY <...>] [RANGE BETWEEN range_start AND range_end])

where <window or agg_func> can be one of:

aggregate functions: AVG, SUM, etc., or:
RANK() -- ordering within the window
LEAD/LAG(exp, n) -- value of exp that is n ahead/behind in the window
PERCENT_RANK() -- relative rank of current row as a %
NTH_VALUE(exp, n) -- value of exp @ position n in window

and range_start and range_end can be one of:
UNBOUNDED PRECEDING, UNBOUNDED FOLLOWING, CURRENT ROW,
offset PRECEDING, offset FOLLOWING

Page 7 of 13

Data 101 Fall 2024 Final Exam Exam Reference Packet

6.2 Example Queries
SELECT id, location, age,
AVG(age) OVER () AS avg_age

FROM residents;

SELECT id, location, age,
SUM(age) OVER (
PARTITION BY location
ORDER BY age
RANGE BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) AS a_sum

FROM residents
ORDER BY location, age;

SELECT id, location, age,
AVG(age) OVER () AS avg_age,
CASE WHEN location = 94720 THEN 'UC Berkeley'

WHEN location = 94709 THEN 'city of Berkeley'
WHEN location = 94105 THEN 'San Francisco'
ELSE 'Unknown Zip Code'
END AS city_name

FROM residents;

CREATE TABLE <relation name> AS (<subquery>);
CREATE TABLE zips (

location VARCHAR(20) NOT NULL,
zipcode INTEGER,
in_district BOOLEAN DEFAULT False,
PRIMARY KEY (location),
UNIQUE (location, zipcode)

);

DROP TABLE [IF EXISTS] <relation name>;
ALTER TABLE zips

ADD avg_pop REAL,
DROP in_district;

CREATE TABLE cast_info (
person_id INTEGER,
movie_id INTEGER,
FOREIGN KEY (person_id) REFERENCES actors (id)
ON DELETE SET NULL ON UPDATE CASCADE,

FOREIGN KEY (movie_id) REFERENCES movies(id) ON DELETE SET NULL
);

Page 8 of 13

Data 101 Fall 2024 Final Exam Exam Reference Packet

7 PostgreSQL String Utilities
This section is not needed for the final exam, but we include it for completeness.

String utility functions:

• string || string→ text (concatenation)

• SUBSTRING(string FROM start)→ text

• SUBSTRING(string FROM re_pattern)→ text

• SUBSTR(string, count)→ text

• REPLACE(source, pattern, replacement)→ text
In REPLACE pattern operates similar to LIKE, not a regular expression.

• REGEXP_REPLACE(source, re_pattern, replacement, flags)→ text
Note: flags must be 'g' to execute a global match replacing all instances.

• SQL supports matching strings using two different types of pattern matching: SQL-style
LIKE patterns, and POSIX Regular Expressions.

• string LIKE pattern→ boolean

• string ~ re_pattern→ boolean

Examples:

'Hello' || 'World' → 'HelloWorld'
STRPOS('Hello', 'el') → 2
SUBSTRING('Thomas' FROM 3) → 'omas'
SUBSTRING('Hello', 2, 3) → 'ell'
SUBSTR('Hello World', 7) → ‘World’

See the next page for Section 7: SQL Pattern Matching, which includes regular expressions.

Page 9 of 13

Data 101 Fall 2024 Final Exam Exam Reference Packet

8 SQL Pattern Matching
This section is not needed for the final exam, but we include it for completeness.

8.1 LIKE Patterns
SQL’s LIKE, and REPLACE functions operate using a simplified pattern syntax.

'abc' LIKE 'abc' → true 'abc' LIKE '_b_' → true
'abc' LIKE 'a%' → true 'abc' LIKE 'c' → false
REPLACE('Hello World', 'l', 'L') → 'HeLLo WorLd'

If pattern does not contain percent signs (%) or underscores (_), then the pattern only represents
the string itself; in that case LIKE acts like the equals operator. An underscore in pattern stands for
(matches) any single character; a percent sign matches any sequence of zero or more characters.

8.2 Regular Expressions: An Abbreviated Reference
The functions ~, REGEXP_REPLACE, and SUBSTRING accept re_pattern regex arguments.

Escapes Shorthand used in a match
\d matches any digit
\s matches any white space character
\w matches any word character

Constraints Used at the beginning or end of a match
^ matches at the beginning of the string
$ matches at the end of the string

Quantifier Used after a match section
* a sequence of 0 or more matches of the atom
+ a sequence of 1 or more matches of the atom
? a sequence of 0 or 1 matches of the atom
{m} a sequence of exactly m matches of the atom
{m,} a sequence of m or more matches of the atom
{m,n} a sequence of m through n (inclusive) matches of the atom; m cannot exceed n

'abcd' ~ 'a.c' → true dot matches any character
'abcd' ~ 'a.*d' → true * repeats the preceding pattern item
'abcd' ~ '(b|x)' → true | means OR, parentheses group
'abcd' ~ '^a' → true ^ anchors to start of string
'abcd' ~ '^(b|c)' → false
substring('foobar' from 'o.b') → 'oob'
substring('foobar' from 'o(.)b') → 'o'
substring('Thomas' from '...\$') → 'mas'
regexp_replace('foobarbaz', 'b..', 'X') → 'fooXbaz'
regexp_replace('foobarbaz', 'b..', 'X', 'g') → 'fooXX'
regexp_replace('Hello World', '[aeiou]', '-', 'g') → 'H-ll- W-rld'

Page 10 of 13

Data 101 Fall 2024 Final Exam Exam Reference Packet

9 MQL: Mongo Query Language Reference
In MongoDBwe commonly query by a collection. The argument to a query function is usually
one or more objects (dicts) that represent a series of steps.

9.1 Query Functions
db.collection.find({});
db.collection.findOne({});

db.collection.find(
{ category: "peace" },
{ _id: 0, category: 1, year: 1,

laureates.firstname: 1,
laureates.surname: 1

}
)
.sort({ year: 1, category: -1 })
.limit(2);

db.collection.aggregate([
{ stage: {...} },
{ stage: {...} }

]);

9.2 Aggregation Stage References
The stage is often one these functions, though there are many more:

$match
$project
$sort/$limit
$group, e.g., {
"$group" :

{ "_id" : "$item",
"totalqty" : {"$sum" : "$instock.qty" } }

}

$unwind, e.g., { $unwind: "$instock" }
$lookup, e.g., {

$lookup : {
from : "inventory",
localField : "instock.loc",
foreignField : "instock.loc",
as :"otheritems"

}
}

Page 11 of 13

Data 101 Fall 2024 Final Exam Exam Reference Packet

10 Odds and Ends

10.1 Base-2 Logarithm Lookup Table
From Wikipedia: For a real number 𝑁 , the binary logarithm (log

2
𝑛) is the power to which the

number 2 must be raised to obtain the value 𝑛.

𝑁 = log
2
𝑛 ⇔ 2

𝑁
= 𝑛

N 2
𝑛

log
2
(𝑛)

1 2
0 0

2 2
1 1

4 2
2 2

8 2
3 3

16 2
4 4

32 2
5 5

64 2
6 6

128 2
7 7

256 2
8 8

512 2
9 9

1024 2
10 10

2048 2
11 11

4096 2
12 12

10.2 Functional Dependencies
A functional dependency (FD) is a form of constraint between 2 sets of attributes in a relation.
For a relational instance with attributes X, Y, and Z:

• The FD𝑋 → 𝑌 is satisfied if for every pair of tuples 𝑡1 and 𝑡2 in the instance, if 𝑡1.𝑋 = 𝑡2.𝑋 ,
then 𝑡1.𝑌 = 𝑡2.𝑌 .

• The FD𝐴𝐵 → 𝐶 is satisfied if for every pair of tuples 𝑡1 and 𝑡2 in the instance, if 𝑡1.𝐴 = 𝑡2.𝐴

and 𝑡1.𝐵 = 𝑡2.𝐵, then 𝑡1.𝐶 = 𝑡2.𝐶.

10.3 Median Absolute Deviation
• For a dataset 𝑋 with median 𝑋̃ = median(𝑋), theMedian Absolute Deviation (MAD) is
MAD(𝑋) = median(|𝑋𝑖 − 𝑋̃|).

• The Minimum Description Length (MDL) for encoding a set of values c in a set of types H
is MDL = min𝑇∈𝐻 ∑

𝑣∈𝑐
(𝐼𝑇 (𝑣) log(|𝑇 |) + (1 − 𝐼𝑇 (𝑣))len(𝑣))

• where 𝐼𝑇 (𝑣) is an indicator for if v “fits” in type T (with |𝑇 | distinct values), log is base 2,
and len(𝑣) is the cost for encoding a value v in some default type.

Page 12 of 13

Data 101 Fall 2024 Final Exam Exam Reference Packet

10.4 Map Reduce
Map(k, v) → <k’, v’>*

• Takes a key-value pair and outputs a set of key-value pairs

• There is one Map function call for each (k,v) pair

Reduce(k’, <v’>*) → <k’, v’’>*

• All values 𝑣′ with same key 𝑘
′ are reduced together and processed in 𝑣

′ order

• There is one Reduce function call for each unique key 𝑘
′

10.5 Entity Relationship (ER) Diagrams

Page 13 of 13

