
[WITH with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 [* | expression [[AS] output_name] [, ...]]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY [ALL | DISTINCT] grouping_element [, ...]]
 [HAVING condition]
 [WINDOW window_name AS (window_definition) [, ...]]
 [{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator]
 [NULLS { FIRST | LAST }] [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start]

where from_item can be one of:
 table_name [*] [[AS] alias [(column_alias [, ...])]]
 [TABLESAMPLE sampling_method (argument [, ...])]
 [LATERAL] (select) [[AS] alias [(column_alias [, ...])]]
 with_query_name [[AS] alias [(column_alias [, ...])]]
 from_item join_type from_item { ON join_condition |
 USING (join_column [, ...]) [AS join_using_alias] }
 from_item NATURAL join_type from_item
 from_item CROSS JOIN from_item

and grouping_element can be one of: () expression (expression [, ...])

and with_query is:
 with_query_name [(column_name [, ...])] AS (select | values)

PostgreSQL

<window or agg_func>: aggregate functions: AVG, SUM, …, or:
● RANK()ordering within the window
● LEAD/LAG(exp, n)value of exp that is n ahead/behind

 in the window
● PERCENT_RANK()relative rank of current row as a %
● NTH_VALUE(exp, n)value of exp @ position n in window

SELECT id, location, age,
 AVG(age) OVER ()
 AS avg_age
FROM Residents;

SELECT id, location, age,
 SUM(age) OVER (
 PARTITION BY location
 ORDER BY age
 RANGE BETWEEN
 UNBOUNDED PRECEDING
 AND
 1 PRECEDING)
 AS a_sum
FROM Residents
ORDER BY location, age;

range_start/range_end:
 UNBOUNDED PRECEDING
 UNBOUNDED FOLLOWING
 CURRENT ROW
 offset PRECEDING
 offset FOLLOWING

CREATE TABLE <relation name> AS (
 <subquery>);
CREATE TABLE Zips (
 location VARCHAR(20) NOT NULL,
 zipcode INTEGER,
 in_district BOOLEAN DEFAULT False,
 PRIMARY KEY (location),
 UNIQUE (location, zipcode)
);
DROP TABLE [IF EXISTS] <relation name>;
ALTER TABLE Zips

ADD avg_pop REAL,
DROP in_district;

CREATE TABLE Cast_info (
 person_id INTEGER,
 movie_id INTEGER,
 FOREIGN KEY (person_id)
 REFERENCES Actor (id)
 ON DELETE SET NULL
 ON UPDATE CASCADE,
 FOREIGN KEY (movie_id)
 REFERENCES Movie (id)
 ON DELETE SET NULL);

REGEXP_REPLACE(source, pattern,
 replacement)
SELECT levenshtein(str1, str2) FROM Strings;
SELECT 'Hello' || 'World',
 STRPOS('Hello', 'el'),
 SUBSTRING('Hello', 2, 3);

PostgreSQL, cont.
<window or agg_func> OVER (
 [PARTITION BY <…>]
 [ORDER BY <…>]
 [RANGE BETWEEN <…> AND <…>])

Entity set (rectangles)
● Entities: things, objects, etc.;
● Entity sets: sets entities w/commonalities.
● Every entity set is required to have a primary

key (underlined attribute).

Relationships (diamonds)
● Connects entity sets.
● A relationship between

the entity sets A and B is
a subset of A x B.

One-one: One on LHS connected
to at most one of RHS, and
vice-versa

Many-one: One on LHS
connected to many on RHS

Many-many: One on LHS
connected to many/few on the
RHS, and vice versa

One-one: One on LHS connected to
exactly one of RHS (≤ 1 & ≥ 1); one on
RHS connected to at most one on LHS

Many-one: One on LHS connected to at
least one on RHS; one on RHS
connected to at most one on LHS

Many-many: One on LHS connected to at
least one on RHS; RHS unconstrained

Edges in ER Diagrams can be directed/undirected and represent constraints on subset A x B.
● Undirected edge (with no arrows): no constraints
● Directed edge (arrow): constrains, or determines, the relation to be at most one.
● Bolded edge determines the relation to be at least one.

Attributes (ovals)
Atomic features
connected to
entity sets or
relationships.

Entity Resolution Diagrams (ER Diagrams)

db.prizes.find({category: "peace"},
 {_id: 0, category: 1, year: 1,
 laureates.firstname: 1,
 laureates.surname: 1})
 .sort({year: 1, category: -1})
 .limit(2))
collection.find({})
collection.findOne({})
collection.aggregate ([
 { stage: {…} },
 …
 { stage: {…} }
])

where stage is one of
 $match
 $project
 $sort/$limit
 $group, e.g., { "$group" :
 { "_id" : "$item",

 "totalqty" :
 {"$sum" : "$instock.qty"}}}

 $unwind, e.g., { $unwind: "$instock" }
 $lookup, e.g., { $lookup :
 {from : "inventory",

 localField : "instock.loc",
 foreignField : "instock.loc",
 as :"otheritems"}
 }

MongoDB

Map(k, v) → <k’, v’>*

● Takes a key-value pair and outputs a set of key-value pairs
● There is one Map function call for each (k,v) pair

Reduce(k’, <v’>*) → <k’, v’’>*

● All values v’ with same key k’ are reduced together
and processed in v’ order

● There is one Reduce function call for each unique key k’

A functional dependency (FD) is a form of constraint between 2 sets of
attributes in a relation. For a relational instance with attributes X, Y, and Z:
● The FD X → Y is satisfied if for every pair of tuples t1 and t2 in the

instance, if t1.X = t2.X, then t1.Y = t2.Y.
● The FD AB → C is satisfied if for every pair of tuples t1 and t2 in the

instance, if t1.A = t2.A and t1.B = t2.B, then t1.C = t2.C.

For a dataset X with median , the Median Absolute
Deviation (MAD) is .

Odds and Ends

The Minimum Description Length (MDL) for encoding a set of values c in a set
of types H is

where is an indicator for if v “fits” in type T (with |T| distinct values), log
is base 2, and len(v) is the cost for encoding a value v in some default type.

