
Data 101: Data Engineering
Final Exam
UC Berkeley, Fall 2023
December 15, 2023

Name:

Email: @berkeley.edu

Student ID:

Examination room:

Name of the student on your left:

Name of the student on your right:

Instructions
Do not open the examination until you are instructed to do so.

This exam consists of 125 points spread over 10 questions (including the Honor Code),
and must be completed in the 170-minute time period on December 15, 2023, 8:10am – 11am
unless you have pre-approved accommodations otherwise.
For multiple-choice questions, select one choice if circular bubble options, and select all
choices that apply if box bubble options. In either case, please indicate your answer(s) by
fully shading in the corresponding box/circle.
Make sure to write your SID on each page to ensure that your exam is graded.

Honor Code [1 pt]

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for
others. I am the person whose name is on the exam, and I completed this exam in accordance
with the Honor Code.

Signature:

Page 1 of 24

Data 101 Fall 2023 Final Exam SID:

Chapter 1: Research Is a JOIN-t Venture [22 pt]

The Sky Computing Lab at UC Berkeley works on research projects related to cloud computing.
The following two tables describe the projects and their student researcher assignments.

Projects

projectId title

1 Cirrus
2 Stratus
3 Cumulus
4 Cumulonimbus

Students

studentId name projectId

1 Frank 1
2 Abhay 1
3 Nikita 2
4 Jordan 3
5 Bridget NULL

1.1. [2 pt] Consider the following query:

SELECT * FROM Projects NATURAL JOIN Students;

What are the attribute names in the resulting output schema? Select all that apply.

□ projectId

□ studentId

□ title

□ name

□ Projects.projectId

□ Students.studentId

□ Projects.title

□ Students.name

□ Students.projectId

□ None of the choices

1.2. [2 pt] Express the natural join query in Question 1.1 as an equivalent inner join query.
Note: Not all blanks may be needed.

SELECT

FROM

;

Page 2 of 24

Data 101 Fall 2023 Final Exam SID:

1.3. [2 pt] Write a SQL query to find the names of the projects that no students are assigned to.
You must use the common table expression projectIdsWithStudents in this query.

WITH projectIdsWithStudents AS (

) SELECT

FROM

;

Suppose that the same database now stores millions of projects and students across the nation.

1.4. [6 pt] Creating a view versus creating a materialized view has consequences on query per-
formance. As the database administrator, youwould like to consider creating CirrusMembers,
the list of students working on project ID 1, in one of two ways:

• CREATE VIEW CirrusMembers AS
(SELECT * FROM Students WHERE projectId = 1);

• CREATE MATERIALIZED VIEW CirrusMembers AS
(SELECT * FROM Students WHERE projectId = 1);

For each of the following queries, will the query run faster if CirrusMembers is declared
as a view or if it instead is declared as a materialized view? Select (A) if view is faster, (B) if
materialized view is faster, or (C) if it does not matter.

(A) (B) (C)
i. SELECT * FROM CirrusMembers; ○ ○ ○
ii. SELECT * FROM Students ○ ○ ○
WHERE projectId = 1;

iii. INSERT INTO Projects (...); ○ ○ ○
iv. INSERT INTO Students (...); ○ ○ ○
v. DELETE FROM Projects ○ ○ ○
WHERE projectId = 5;

vi. DELETE FROM Students ○ ○ ○
WHERE projectId = 1;

Page 3 of 24

Data 101 Fall 2023 Final Exam SID:

Now, suppose that instead of building CirrusMembers, you create the following indexes to im-
prove query performance:

(A) CREATE INDEX ProjectsProjectId ON Projects(projectId);
(B) CREATE INDEX StudentsStudentId ON Students(studentId);
(C) CREATE INDEX StudentsProjectId ON Students(projectId);

1.5. [4 pt] Which of the above indexes will be accessed (i.e., read/modified) when executing the
following queries? For each query below, fill in the letter(s) corresponding to each index
accessed. Select all that apply or None.

(A) (B) (C) None
i. SELECT * FROM Projects □ □ □ □
WHERE projectId = 337;

ii. SELECT * FROM Projects □ □ □ □
WHERE title LIKE '%cloud%';

iii. SELECT * FROM Students □ □ □ □
WHERE projectId = 337;

iv. SELECT * FROM Projects □ □ □ □
NATURAL JOIN Students;

1.6. [6 pt] Indexes may speed up some queries, but maintaining indexes also has a cost. For
each of the following queries, compare its performance before and after creating the indexes
described above. Will each query run (A) faster with indexes, (B) slower, or (C) about the
same?

(A) (B) (C)
i. SELECT * FROM Projects; ○ ○ ○
ii. SELECT * FROM Projects ○ ○ ○
WHERE projectId = 337;

iii. SELECT * FROM Projects ○ ○ ○
WHERE title LIKE '%cloud%';

iv. SELECT COUNT(*) FROM Students ○ ○ ○
GROUP BY projectId;

v. INSERT INTO Projects (...); ○ ○ ○
vi. DELETE FROM Projects ○ ○ ○

WHERE projectId = 5;

Page 4 of 24

Data 101 Fall 2023 Final Exam SID:

Chapter 2: The Bay Area Bridge Maze [12 pt]

Welcome to the San Francisco Bay Area! In this section, we will look at all the bridges that span
the Bay, along with their associated hourly traffic data records and incident data records. The
data is stored in the following schema:

Bridges (id INT, name VARCHAR, openYear INT, length FLOAT, type VARCHAR)
Traffic (id INT, bridgeId INT, date DATE, hour INT, vehicles INT)
Incidents (id INT, bridgeId INT, date DATE, severity VARCHAR, injuries INT)

Write a PostgreSQL query to accomplish each specified task below.
Note: For each question below, not all blanks may be needed.

2.1. [3 pt] Create a view with two columns, bridgeId and incidentsCount, in which each
row contains the total number of incidents on that bridge.

CREATE VIEW IncidentsSummary AS (

SELECT

FROM

);

2.2. [4 pt] Find the bridges with more incidents than average. Return the bridge IDs and their
incident counts. Assume the IncidentsSummary view in Question 2.1 is correctly imple-
mented.

SELECT

FROM

;

Page 5 of 24

Data 101 Fall 2023 Final Exam SID:

For your convenience, the relational schema from the previous page is copied below:

Bridges (id INT, name VARCHAR, openYear INT, length FLOAT, type VARCHAR)
Traffic (id INT, bridgeId INT, date DATE, hour INT, vehicles INT)
Incidents (id INT, bridgeId INT, date DATE, severity VARCHAR, injuries INT)

2.3. [5 pt] Roll down those windows. For each record in the Traffic table, compute a run-
ning total of vehicles for each bridge on each day. Return each record’s bridge ID, date,
number of vehicles, and the running total (as runningTotal), in that order. Sort the result
by date in ascending order. Hint: The date column contains the timestamp of each record.

SELECT

AS runningTotal

FROM

;

Page 6 of 24

Data 101 Fall 2023 Final Exam SID:

Chapter 3: Query Performance of the Bourgeoisie [18 pt]

Mackenzie works at a boutique store whose headquarters are in Ulaanbaatar, the capital city of
Mongolia. The store maintains the following database schema:

Orders (id, date, customerId, productId)
Customers (id, name, country)

3.1. [4 pt] Suppose that Cassandra writes the be-
low query:

SELECT O.id, C.name
FROM Orders O, Customers C
WHERE O.customerId = C.id
AND C.country = 'Mongolia'
AND O.date >= '2023-01-01';

The query optimizer then produces the execu-
tion plan on the right, according to SQL query
semantics. Fill in the blanks.

[I]

[II]

[III]

Orders Customers

i. What extended relational operators should be in the nodes marked [I], [II], and [III]?

[I] ○ 𝜋 ○ 𝜌 ○ 𝜎 ○ ⋈ ○ × ○ 𝛾

[II] ○ 𝜋 ○ 𝜌 ○ 𝜎 ○ ⋈ ○ × ○ 𝛾

[III] ○ 𝜋 ○ 𝜌 ○ 𝜎 ○ ⋈ ○ × ○ 𝛾
ii. For each relational operator you selected above, write its respective subscript according

to the original SQL query, e.g. join conditions, selected attributes, etc. If there are no
subscripts, write N/A.

[I]

[II]

[III]

Page 7 of 24

Data 101 Fall 2023 Final Exam SID:

3.2. [7 pt] Suppose the query optimizer then optimizes the query plan in Question 3.1 with
predicate pushdown. What is the resulting optimized query plan?

i. First, select the tree shape thatmost closely resembles the optimized query plan:

[I]

[II]

[III]

[IV]

[V]

○ (A)

[I]

[II]

[III]

[IV]

[V]

[VI]

○ (B)

[I]

[II]

[III]

[IV]

[V]

[VI]

[VII]

○ (C)

ii. For the query plan you selected above, define each node by filling in the blanks:

• For relational operators, write in the relational operator and its subscript.

• For scans, write the table name.

• Depending on the tree shape you selected, you may not need all blanks below.
Write N/A on the blanks that you do not need.

[I]

[II]

[III]

[IV]

[V]

[VI]

[VII]

Page 8 of 24

Data 101 Fall 2023 Final Exam SID:

3.3. [3 pt] Next, consider the following query:

SELECT COUNT(*)
FROM Orders
WHERE date > '2023-10-01'
GROUP BY productId;

Use the below EXPLAIN ANALYZE output of this query to answer the following questions.

QUERY PLAN
--
HashAggregate (cost=29.73..31.68 rows=195 width=12)

(actual time=0.014..0.015 rows=3 loops=1)
Group Key: productid
-> Bitmap Heap Scan on orders (cost=8.93..26.65 rows=617 width=4)

(actual time=0.006..0.006 rows=3 loops=1)
Recheck Cond: (date > '2023-10-01'::date)
Heap Blocks: exact=1
-> Bitmap Index Scan on idx_orders_date

(cost=0.00..8.78 rows=617 width=0)
(actual time=0.002..0.003 rows=3 loops=1)

Index Cond: (date > '2023-10-01'::date)

i. What is the name of the index used in this query?

ii. What is the optimizer’s estimate on how many
rows the index scan will return?

iii. What is the actual number of rows returned by
the index scan?

Page 9 of 24

Data 101 Fall 2023 Final Exam SID:

3.4. [4 pt] Finally, consider the following query:

SELECT COUNT(*) FROM Customers C
INNER JOIN Orders O ON C.id = O.customerId
WHERE C.country = 'Mongolia' AND O.date > '2023-10-01';

Use the below EXPLAIN ANALYZE output of this query to answer the following questions.

QUERY PLAN
--
Aggregate (cost=48.96..48.97 rows=1 width=8)

(actual time=0.027..0.029 rows=1 loops=1)
-> Hash Join (cost=29.61..48.95 rows=3 width=0)

(actual time=0.025..0.026 rows=0 loops=1)
Hash Cond: (o.customerid = c.id)
-> Bitmap Heap Scan on orders o

(cost=8.93..26.65 rows=617 width=4)
(actual time=0.005..0.005 rows=1 loops=1)

Recheck Cond: (date > '2023-10-01'::date)
Heap Blocks: exact=1
-> Bitmap Index Scan on idx_orders_date

(cost=0.00..8.78 rows=617 width=0)
(actual time=0.003..0.003 rows=3 loops=1)

Index Cond: (date > '2023-10-01'::date)
-> Hash (cost=20.62..20.62 rows=4 width=4)

(actual time=0.005..0.006 rows=0 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 8kB
-> Seq Scan on customers c (cost=0.00..20.62 rows=4 width=4)

(actual time=0.005..0.005 rows=0 loops=1)
Filter: ((country)::text = 'Mongolia'::text)
Rows Removed by Filter: 3

i. What join method was used in this query?

ii. Which table was used to build the hash table? ○ Customers ○ Orders

iii. Which table scanwas estimated to returnmore rows? ○ Customers ○ Orders

iv. Which of the following treesmost closely resembles this query plan?

𝛾

⋈

𝜎

Scan

○ (A)

𝛾

⋈

𝜎

Scan

Scan

○ (B)

𝛾

⋈

𝜎

Scan

𝜎

Scan

○ (C)

Page 10 of 24

Data 101 Fall 2023 Final Exam SID:

Chapter 4: Normalizing Snackpass Usage [5 pt]

Consider the following table UserRestaurantVisits, which logs each user’s visit to a particular
restaurant, including details like the visit’s date and Snackpass points earned for the visit.

UserID UserName RestaurantID RestaurantName Cuisine Date Points

1 Napoleon 101 Racha Café Thai 2023-01-15 10
1 Napoleon 102 Sizzling Lunch Fusion 2023-02-05 5
2 Cassandra 103 Tacos’n More Mexican 2023-03-20 8
3 Ron 104 Tender Greens Salad 2023-04-10 12
5 Dana 105 Imm Thai Thai 2023-05-25 7
2 Cassandra 105 Imm Thai Thai 2023-04-25 10

4.1. [2 pt] Assume the table only contains data as shown above. Which of the following func-
tional dependencies are true for this table? Select all that apply.

□ A. UserID→ UserName.

□ B. UserID→ Date.

□ C. UserID→ Points.

□ D. RestaurantID→ Cuisine.

□ E. RestaurantName→ RestaurantID.

□ F. None of the above.

4.2. [3 pt] Wewant to perform normalization in order to reduce data redundancy. What columns
should be in each of the tables below? Select all that apply.

i. Users
□ A. UserID
□ B. UserName
□ C. RestaurantID
□ D. RestaurantName
□ E. Cuisine
□ F. Date
□ G. Points

ii. Restaurants
□ A. UserID
□ B. UserName
□ C. RestaurantID
□ D. RestaurantName
□ E. Cuisine
□ F. Date
□ G. Points

iii. Visits
□ A. UserID
□ B. UserName
□ C. RestaurantID
□ D. RestaurantName
□ E. Cuisine
□ F. Date
□ G. Points

Page 11 of 24

Data 101 Fall 2023 Final Exam SID:

Chapter 5: Music Structure and Semi-Structure [14 pt]

Yuto is comparing different data models for his collection of classical music.

Suppose he first builds the following MongoDB collection music, of which a sample is below:
[
{
"title": "Beethoven's Symphony No. 5",
"composer": "Beethoven",
"compositionYear": 1808,
"genre": "Classical",
"tonic_keys": ["C Minor"],
"performances": [
{
"orchestra": "Vienna Philharmonic",
"conductor": "Leonard Bernstein",
"year": 1978
}
]
},
{
"title": "The Four Seasons",
"composer": "Vivaldi",
"compositionYear": 1723,
"genre": "Baroque",
"tonic_keys": ["E Major", "G Minor", "F Major", "F Minor"]
},
{
"title": "Swan Lake",
"composer": "Tchaikovsky",
"compositionYear": 1876,
"genre": "Ballet",
"tonic_keys": ["B Minor", "A Major", "E Minor"],
"performances": [
{
"balletCompany": "Mariinsky Ballet",
"year": 1989
}
]
},
{
"title": "Pierrot Lunaire",
"composer": "Schoenberg",
"compositionYear": 1912,
"genre": "Atonal"
}
]

Page 12 of 24

Data 101 Fall 2023 Final Exam SID:

For each of the questions below, write a MongoDB query on the music collection to accomplish
the specified task. Both MongoDB and PyMongo syntax are acceptable.

5.1. [3 pt] Find all works written in the C Major tonic key.

5.2. [4 pt] Find the number of works per each genre. The output should be a list of documents
with only the following fields: genre and count.

music.aggregate([
{

},
{

}
])

Page 13 of 24

Data 101 Fall 2023 Final Exam SID:

Yuto is also considering a PostgreSQL solution. He looks at his existing database and constructs
the below ER diagram, with which he then declares a relational schema:

Music

id

title

composer

compositionYear genre

Performances

id musicId year description

MusicTonalities

Tonalities

id

tonicKey

5.3. [3 pt] Use the above ER diagram to complete the below DDL statements. In particular, de-
clare the MusicTonalities table, and include any applicable foreign key constraints.

CREATE TABLE Music(
id INT PRIMARY KEY, title VARCHAR, genre VARCHAR,
composer VARCHAR, compositionYear INT

);

CREATE TABLE Performances(
id INT PRIMARY KEY, musicId INT,
year INT, description VARCHAR,
FOREIGN KEY (musicId) REFERENCES Music(id),

);

CREATE TABLE Tonalities(
id INT PRIMARY KEY,
tonicKey VARCHAR,

);

CREATE TABLE MusicTonalities(

);

Page 14 of 24

Data 101 Fall 2023 Final Exam SID:

5.4. i. [1 pt] Given the schema defined in Question 5.3, write a SQL query to find the number
of performances in the year 1978.

SELECT

FROM

;

ii. [1 pt] Compare query performance between a PostgreSQL RDBMS and a MongoDB
database. Is the SQL query you wrote faster or slower than the equivalent MongoDB
query?

○ Faster ○ Slower ○ Comparable

iii. [2 pt] In no more than 3 sentences, justify your answer to the previous part.

Page 15 of 24

Data 101 Fall 2023 Final Exam SID:

Chapter 6: “I Volunteer as Data Transformation!” [9 pt]

Natalie and Cassandra are analyzing data on the Hunger Games and are looking to apply ad-
vanced EDA and data transformation. Consider the following array, tributes:

tributes = [100 120 200 300 500 1200]

6.1. [5 pt] Use the Hampel X84 method to detect outliers in tributes. Recall that the Hampel
X84 method trims outliers that are 2 ⋅ 𝑘 ⋅𝑀𝐴𝐷 from the median, where MAD is the Median
Absolute Deviation, and 𝑘 is a scalar multiplier.

i. What is the median of
tributes?

○ 50
○ 100

○ 140
○ 200

○ 250
○ 300

ii. What is the MAD of
tributes?

○ 50
○ 100

○ 140
○ 200

○ 250
○ 300

iii. Using the Hampel X84 method, circle all outlier(s) in this data. For the purposes of the
exam, use 𝑘 = 1.5 (instead of 1.4826) as the MAD multiplier. Show your work.

Circle all outliers: 100 / 120 / 200 / 300 / 500 / 1200

6.2. [2 pt] Suppose we instead apply a 20% winsorization of tributes (i.e., 20% tails). What is
the resulting 20% winsorized array? The 20th percentile and 80th percentile of tributes
are 120 and 500, respectively.

○ A. [120 200 300 500]

○ B. [200 200 200 300 300 300]

○ C. [120 120 200 300 500 500]

○ D. [100 100 200 300 1200 1200]

○ E. [100 120 200 300 500 1200]

○ F. None of the above
6.3. [2 pt] What is the Levenshtein distance between the strings Katniss and Catnip?

Levenshtein distance:

Page 16 of 24

Data 101 Fall 2023 Final Exam SID:

Chapter 7: ACID is a Basic Principle of Concurrency [10 pt]

7.1. [1 pt] Suppose one transaction Tx 1 is allowed to read a
new valuewritten by another concurrent transaction
Tx 2, before Tx 2 encounters an error and rolls back.
Which ACID property might the database violate?

○ Atomicity
○ Consistency
○ Isolation
○ Durability

7.2. [3 pt] Which of the following is/are true if two actions conflict? Select all that apply.

□ A. They must be from the same transaction.
□ B. They must be from different transactions.
□ C. They must operate on the same data object.
□ D. One of them must be a read operation (i.e., read action).
□ E. One of them must be a write operation (i.e., write action).
□ F. Both of them must be write operations (i.e., write actions).

Consider the following transaction schedule of 3 concurrent transactions on data objects 𝐴, 𝐵, 𝐶:

1 2 3 4 5 6 7 8 9
Tx 1 𝑅1(𝐴) 𝑊1(𝐴) 𝑅1(𝐶) 𝑊1(𝐶)
Tx 2 𝑅2(𝐵) 𝑊2(𝐴)
Tx 3 𝑅3(𝐶) 𝑅3(𝐴) 𝑊3(𝐶)

7.3. [3 pt] Consider the conflict graph for this schedule, which we will not ask you to draw out.
Instead, select all edges that exist in this conflict graph, where Tx 1 → Tx 2 means there is a
directed edge that starts at Tx 1 and ends at Tx 2.

□ Tx 1 → Tx 2
□ Tx 2 → Tx 1

□ Tx 2 → Tx 3
□ Tx 3 → Tx 2

□ Tx 1 → Tx 3
□ Tx 3 → Tx 1

□ None

7.4. [3 pt] Is this schedule serializable? If the answer is yes, write an equivalent serial transaction
schedule. If the answer is no, explain why.

Serializable? (circle) Yes / No

Page 17 of 24

Data 101 Fall 2023 Final Exam SID:

Chapter 8: Wikipedia is Distributed Media [4 pt]

8.1. [4 pt] Consider the physical execution of a MapReduce program that aggregates (i.e. sums
up) the daily page views of Wikipedia pages of popular music artists. Specifically:

• Each mapper task reads in a partition, and outputs article titles and their partial sum of
views in this partition.

• Each reducer task takes in all partial sums of a particular article, and outputs the total
page views of that article.

Suppose the mapper outputs are as given below, in the form key: value:

Mapper 1

Michael Jackson: 120
Lady Gaga: 30
The Beatles: 100

Mapper 2

Lady Gaga: 60
Eminem: 80

Reducer 1

(I)

Reducer 2

(II)

Reducer 3

(III)

Reducer 4

(IV)

Example execution of a MapReduce program.

Suppose that the keys are then assigned in alphabetical order to the reducers.
What are the outputs of the reducers? Write each in the form of key: value.

(I)

(II)

(III)

(IV)

Page 18 of 24

Data 101 Fall 2023 Final Exam SID:

Chapter 9: Rolling a Data Cube [13 pt]

Consider the following sales records relation data:

Year Month Category Sales
2022 1 Electronics 150
2022 1 Clothing 500
2022 2 Electronics 120
2022 2 Clothing 400
.
2022 1 Electronics 180
2023 1 Clothing 450
.

9.1. [5 pt] Write a SQL query to perform a roll up that gets the approximate annual sales data.

• For each year, get the total sales, average sales per month in that year, and the standard
deviation of sales across all months in that year.

• Compute these statistics by sampling 20% of the records using BERNOULLI.

Hint: STDDEV(values) gives the standard deviation of a column named values.

SELECT ,

AS totalSales,

AS monthlyAverageSales,

AS salesStandardDeviation

FROM data TABLESAMPLE

;

Page 19 of 24

Data 101 Fall 2023 Final Exam SID:

Note: As part of the course content, we did not cover CUBE() and ROLLUP(), and so we do not
expect you to know how to use these PostgreSQL functions right off-the-bat. However, one of
the learning goals of this course is to read SQL documentation to use new functions. The SQL
documentation for CUBE() and ROLLUP() is attached as reference to this exam and is
sufficient for you to answer the following questions.

9.2. [3 pt] Lisa wants to create monthly and yearly aggregates of the sales records using the
following PostgreSQL query:

SELECT year, month, SUM(sales) FROM data GROUP BY ROLLUP(year, month);

The same aggregation result can also be created with multiple group-by queries, each pro-
ducing a subset of the aggregation rows in the roll-up query. Which of the following queries
will produce rows that will also appear in the roll-up query result? Select all that apply.

□ A. SELECT year, month, SUM(sales) FROM data GROUP BY year, month;
□ B. SELECT year, NULL as month, SUM(sales) FROM data GROUP BY year;
□ C. SELECT NULL as year, month, SUM(sales) FROM data GROUP BY month;
□ D. SELECT SUM(sales) FROM data;
□ E. SELECT NULL AS year, NULL AS month, SUM(sales) FROM data;

9.3. [3 pt] Lisa now wants to try out the CUBE() aggregations using the following PostgreSQL
query:

SELECT year, month, SUM(sales) FROM data GROUP BY CUBE(year, month);

Which of the following queries will produce rows that will also appear in the cube query
result? Select all that apply.

□ A. SELECT year, month, SUM(sales) FROM data GROUP BY year, month;
□ B. SELECT year, NULL as month, SUM(sales) FROM data GROUP BY year;
□ C. SELECT NULL as year, month, SUM(sales) FROM data GROUP BY month;
□ D. SELECT SUM(sales) FROM data;
□ E. SELECT NULL AS year, NULL AS month, SUM(sales) FROM data;

9.4. [2 pt] Suppose 𝐴 is a set of 𝑛 attributes, e.g., 𝐴 = {𝑦𝑒𝑎𝑟, 𝑚𝑜𝑛𝑡ℎ}. Both ROLLUP(A) and
CUBE(A) can be constructed by combining a set of multiple group-by queries, each on a
distinct attribute set.

i. How many distinct attribute sets will ROLLUP(A) produce?

ii. How many distinct attribute sets will CUBE(A) produce?

Page 20 of 24

Data 101 Fall 2023 Final Exam SID:

Chapter 10: Grab Bag [17 pt]

For each of the belowmultiple-choice questions, select one choice if circular bubble options, and
select all choices that apply if box bubble options. In either case, please indicate your answer(s)
by fully shading in the corresponding box/circle.

10.1. [2 pt] Which of the following statements about PostgreSQL primary keys (PKs) are true?

□ A. Specifying a column as PK will build a hash index on that column, by default.

□ B. Specifying a column as PK in a relational schema will also ensure that the relation’s
records are clustered on that column’s values, i.e., stored in PK order on disk.

□ C. Specifying a column as PK will enforce both a unique constraint and a non-null con-
straint on that column.

□ D. Primary keys can span more than one column.

10.2. [3 pt] Which of the following statements about sampling methods are true? The lecture
code for reservoir sampling is attached as reference to this exam.

□ A. ORDER BY RANDOM() LIMIT n does not produce a fixed number of output rows.

□ B. TABLESAMPLE BERNOULLI does not produce a fixed number of output rows.

□ C. TABLESAMPLE BERNOULLI supports stratified sampling out of the box, i.e.., one can
specify that the output sample has (on average) n rows with a specific attribute value.

□ D. Reservoir sampling is an algorithm that produces a simple random sample of rows
with runtime linear in the number of rows of the original table.

□ E. Reservoir sampling supports sampling from streams of data, where the total number
of rows to sample from is not known in advance.

□ F. Joining samples of two tables 𝐴 and 𝐵 will produce the same number of rows, on
average, as first joining 𝐴 and 𝐵, then sampling the joined result.

10.3. [2 pt] Which of the following statements about Entity Resolution ismost correct?

○ A. Entity Resolution is the process of normalizing a relational schema using ER Diagram
Software.

○ B. Entity Resolution is the process of standardizing data into distinct real-world entities.

○ C. Both of the above statements are true.

○ D. None of the above statements are true.

Page 21 of 24

Data 101 Fall 2023 Final Exam SID:

10.4. [4 pt] Which rectangular data models exhibit each property below? Assume PostgreSQL
relations, pandas DataFrames, scipy matrices, and Google Sheets. Select all that apply.

i. All values in an instance of this model must be of the same data type.

□ A. Relation □ B. Dataframe □ C. Matrix/Tensor □ D. Spreadsheet

ii. Columns must have labels, e.g., an attribute name.
□ A. Relation □ B. Dataframe □ C. Matrix/Tensor □ D. Spreadsheet

iii. The user interface supports direct manipulation.
□ A. Relation □ B. Dataframe □ C. Matrix/Tensor □ D. Spreadsheet

iv. In any instance of this model, a row can be referenced by row address or primary key.
□ A. Relation □ B. Dataframe □ C. Matrix/Tensor □ D. Spreadsheet

10.5. [2 pt] Which of the following statements about OLAP are true? Select all that apply.

□ A. OLAP systems are designed to support a high throughput of database updates by
many simultaneous users.

□ B. OLAP systems are most often deployed in a data warehouse.

□ C. Themajority of OLAP systems are implemented as multidimensional OLAP (MOLAP)
systems and do not support any SQL interfaces.

□ D. Cross-tabs in OLAP systems are functionally equivalent to pivot tables in that they
can summarize data across multiple variable categories.

10.6. [4 pt] True/False: Fall 2023 Data 101 Guest Lectures Edition

i. Databricks provides a unified platform that integrates different business needs like stor-
age, governance, data science, and analytics on top of Spark.

○ True ○ False

ii. Databricks provides significantly different algorithms and implementations for the same
set of features available in the open-source Spark.

○ True ○ False

iii. Modin is a Python package that implements a dataframe model with parallel processing
support.

○ True ○ False

iv. For theData 101DataHub, every user logs in to their ownmachine, whose computational
resources are not shared with other users.

○ True ○ False

Page 22 of 24

Data 101 Fall 2023 Final Exam SID:

Chapter 11: Congratulations! [0 pt]

Congratulations! You have completed this exam.

• Make sure that you have written your Student ID number on every other page of the exam.
You may lose points on pages where you have not done so.

• Also ensure that you have signed the Honor Code on the cover page of the exam for 1 point.

• If more than 10 minutes remain in the exam period, you may hand in your paper and leave.

• If ≤ 10 minutes remain, please sit quietly until the exam concludes.

Congrats on finishing the class! We’re so happy to have spent this semester with you.

[Optional, 0 pts] Use this page to draw your favorite Data 101 moment!

Page 23 of 24

Data 101 Fall 2023 Final Exam SID:

This page is intentionally left blank.

Page 24 of 24

Excerpts from PostgreSQL Documentation (You can tear off this page)
7.2.4. GROUPING SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of
grouping sets. The data selected by the FROM andWHERE clauses is grouped separately by each
specified grouping set, aggregates computed for each group just as for simple GROUP BY clauses,
and then the results returned. For example:

=> SELECT * FROM items_sold;

brand | size | sales
-------+------+-------
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5

=> SELECT brand, size, sum(sales)
FROM items_sold
GROUP BY GROUPING SETS ((brand), (size), ());
brand | size | sum
-------+------+-----
Foo | | 30
Bar | | 20

| L | 15
| M | 35
| | 50

Each sublist of GROUPING SETS may specify zero or more columns or expressions and is inter-
preted the same way as though it were directly in the GROUP BY clause. An empty grouping set
means that all rows are aggregated down to a single group (which is output even if no input rows
were present), as described above for the case of aggregate functions with no GROUP BY clause.

A shorthand notation is provided for specifying two common types of grouping set. A clause of
the form
ROLLUP (e1, e2, e3, ...) represents the given list of expressions and all prefixes of the
list including the empty list; thus it is equivalent to

GROUPING SETS (
(e1, e2, e3, ...), ... (e1, e2), (e1), ()

)

This is commonly used for analysis over hierarchical data; e.g., total salary by department, di-
vision, and company-wide total. A clause of the form CUBE (e1, e2, ...) represents the
given list and all of its possible subsets (i.e., the power set). Thus CUBE (a, b, c) is equiva-
lent to

GROUPING SETS (
(a, b, c), (a, b), (a, c), (a),
(b, c), (b), (c), ()

)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested
inside a GROUPING SETS clause. If one GROUPING SETS clause is nested inside another, the
effect is the same as if all the elements of the inner clause had been written directly in the outer
clause.

Lecture 25 Reservoir Sampling Algorithm (You can tear off this page)
from random import randrange

def reservoir_sample(data, n, k):
fill the reservoir array
r = []
for i in range(k):
r.append(data[i])

replace elements with gradually decreasing probability
for i in range(k, n-1):
randrange(a) generates a uniform integer in [0, a)
j = randrange(i+1)
if j < k:

r[j] = data[i]

return(r)

[WITH with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 [* | expression [[AS] output_name] [, ...]]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY [ALL | DISTINCT] grouping_element [, ...]]
 [HAVING condition]
 [WINDOW window_name AS (window_definition) [, ...]]
 [{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator]
 [NULLS { FIRST | LAST }] [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start]

where from_item can be one of:
 table_name [*] [[AS] alias [(column_alias [, ...])]]
 [TABLESAMPLE sampling_method (argument [, ...])]
 [LATERAL] (select) [[AS] alias [(column_alias [, ...])]]
 with_query_name [[AS] alias [(column_alias [, ...])]]
 from_item join_type from_item { ON join_condition |
 USING (join_column [, ...]) [AS join_using_alias] }
 from_item NATURAL join_type from_item
 from_item CROSS JOIN from_item

and grouping_element can be one of: () expression (expression [, ...])

and with_query is:
 with_query_name [(column_name [, ...])] AS (select | values)

PostgreSQL

<window or agg_func>: aggregate functions: AVG, SUM, …, or:
● RANK()ordering within the window
● LEAD/LAG(exp, n)value of exp that is n ahead/behind

 in the window
● PERCENT_RANK()relative rank of current row as a %
● NTH_VALUE(exp, n)value of exp @ position n in window

SELECT id, location, age,
 AVG(age) OVER ()
 AS avg_age
FROM Residents;

SELECT id, location, age,
 SUM(age) OVER (
 PARTITION BY location
 ORDER BY age
 RANGE BETWEEN
 UNBOUNDED PRECEDING
 AND
 1 PRECEDING)
 AS a_sum
FROM Residents
ORDER BY location, age;

range_start/range_end:
 UNBOUNDED PRECEDING
 UNBOUNDED FOLLOWING
 CURRENT ROW
 offset PRECEDING
 offset FOLLOWING

CREATE TABLE <relation name> AS (
 <subquery>);
CREATE TABLE Zips (
 location VARCHAR(20) NOT NULL,
 zipcode INTEGER,
 in_district BOOLEAN DEFAULT False,
 PRIMARY KEY (location),
 UNIQUE (location, zipcode)
);
DROP TABLE [IF EXISTS] <relation name>;
ALTER TABLE Zips

ADD avg_pop REAL,
DROP in_district;

CREATE TABLE Cast_info (
 person_id INTEGER,
 movie_id INTEGER,
 FOREIGN KEY (person_id)
 REFERENCES Actor (id)
 ON DELETE SET NULL
 ON UPDATE CASCADE,
 FOREIGN KEY (movie_id)
 REFERENCES Movie (id)
 ON DELETE SET NULL);

REGEXP_REPLACE(source, pattern,
 replacement)
SELECT levenshtein(str1, str2) FROM Strings;
SELECT 'Hello' || 'World',
 STRPOS('Hello', 'el'),
 SUBSTRING('Hello', 2, 3);

PostgreSQL, cont.
<window or agg_func> OVER (
 [PARTITION BY <…>]
 [ORDER BY <…>]
 [RANGE BETWEEN <…> AND <…>])

Entity set (rectangles)
● Entities: things, objects, etc.;
● Entity sets: sets entities w/commonalities.
● Every entity set is required to have a primary

key (underlined attribute).

Relationships (diamonds)
● Connects entity sets.
● A relationship between

the entity sets A and B is
a subset of A x B.

One-one: One on LHS connected
to at most one of RHS, and
vice-versa

Many-one: One on LHS
connected to many on RHS

Many-many: One on LHS
connected to many/few on the
RHS, and vice versa

One-one: One on LHS connected to
exactly one of RHS (≤ 1 & ≥ 1); one on
RHS connected to at most one on LHS

Many-one: One on LHS connected to at
least one on RHS; one on RHS
connected to at most one on LHS

Many-many: One on LHS connected to at
least one on RHS; RHS unconstrained

Edges in ER Diagrams can be directed/undirected and represent constraints on subset A x B.
● Undirected edge (with no arrows): no constraints
● Directed edge (arrow): constrains, or determines, the relation to be at most one.
● Bolded edge determines the relation to be at least one.

Attributes (ovals)
Atomic features
connected to
entity sets or
relationships.

Entity Resolution Diagrams (ER Diagrams)

db.prizes.find({category: "peace"},
 {_id: 0, category: 1, year: 1,
 laureates.firstname: 1,
 laureates.surname: 1})
 .sort({year: 1, category: -1})
 .limit(2))
collection.find({})
collection.findOne({})
collection.aggregate ([
 { stage: {…} },
 …
 { stage: {…} }
])

where stage is one of
 $match
 $project
 $sort/$limit
 $group, e.g., { "$group" :
 { "_id" : "$item",

 "totalqty" :
 {"$sum" : "$instock.qty"}}}

 $unwind, e.g., { $unwind: "$instock" }
 $lookup, e.g., { $lookup :
 {from : "inventory",

 localField : "instock.loc",
 foreignField : "instock.loc",
 as :"otheritems"}
 }

MongoDB

Map(k, v) → <k’, v’>*

● Takes a key-value pair and outputs a set of key-value pairs
● There is one Map function call for each (k,v) pair

Reduce(k’, <v’>*) → <k’, v’’>*

● All values v’ with same key k’ are reduced together
and processed in v’ order

● There is one Reduce function call for each unique key k’

A functional dependency (FD) is a form of constraint between 2 sets of
attributes in a relation. For a relational instance with attributes X, Y, and Z:
● The FD X → Y is satisfied if for every pair of tuples t1 and t2 in the

instance, if t1.X = t2.X, then t1.Y = t2.Y.
● The FD AB → C is satisfied if for every pair of tuples t1 and t2 in the

instance, if t1.A = t2.A and t1.B = t2.B, then t1.C = t2.C.

For a dataset X with median , the Median Absolute
Deviation (MAD) is .

Odds and Ends

The Minimum Description Length (MDL) for encoding a set of values c in a set
of types H is

where is an indicator for if v “fits” in type T (with |T| distinct values), log
is base 2, and len(v) is the cost for encoding a value v in some default type.

