DATA 101/INFO 258: DATA ENGINEERING
MIDTERM ExAM
ExAM REFERENCE PACKET

UC Berkeley, Spring 2025
March 12, 2025

Name:

Email: @berkeley.edu

Student ID:

Instructions

Do not open this exam reference packet until you are instructed to do so.

Make sure to write your name, email, and SID on this cover page.

DaATtA 101/INFO 258 SPRING 2025 MipTERM Exam Exam Reference Packet

1 PostgreSQL Reference

[WITH with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...]) 11
[* | expression [[AS] output_name] [, 11
[FROM from_item [, ...] 1]
[WHERE condition]
[GROUP BY [ALL | DISTINCT] grouping_element [, ...]]
[HAVING condition]
[WINDOW window_name AS (window_definition) [, ...]]
[{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
[ORDER BY expression [ASC | DESC | USING operator]

[NULLS { FIRST | LAST } 1 [, ...]1 1]
[LIMIT { count | ALL }]
[OFFSET start]

where from_item can be one of:

table_name [*] [[AS] alias [(column_alias [, ...]) 1 1]
[TABLESAMPLE sampling method (argument [, ...])]
[LATERAL] (select) [[AS] alias [(column_alias [, ...]1) 1 1]
with_query_name [[AS] alias [(column_alias [, ...])] 1]
from_item join_type from_item { ON join_condition |
USING (join_column [, ...])

[AS join_using_alias] }
from_item NATURAL join_type from_item
from_item CROSS JOIN from_item

and grouping_element can be one of: expressionor (expression [, ...])

and with_query is:
with_query_name [(column_name [, ...])] AS (SELECT | VALUES)

1.1 Window Functions

<window or agg_func> OVER (
[PARTITION BY <...>] [ORDER BY <...>] [RANGE BETWEEN range_start AND range_end])

where <window or agg_func> can be one of:

aggregate functions: AVG, SUM, etc., or:

RANK() -- ordering within the window

LEAD/LAG(exp, n) -- value of exp that is n ahead/behind in the window
PERCENT_RANK() -- relative rank of current row as a %

NTH_VALUE (exp, n) -- value of exp @ position n in window

and range_start and range_end can be one of:
UNBOUNDED PRECEDING, UNBOUNDED FOLLOWING, CURRENT ROW,
offset PRECEDING, offset FOLLOWING

Page 1 of 4

DaATtA 101/INFO 258 SPRING 2025 MipTERM Exam Exam Reference Packet

1.2 Example Queries

SELECT id, location, age,
AVG(age) OVER () AS avg_age
FROM residents;

SELECT id, location, age,
SUM(age) OVER (
PARTITION BY location
ORDER BY age
RANGE BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) AS a_sum
FROM residents
ORDER BY location, age;

CREATE TABLE <relation name> AS (<subquery>);
CREATE TABLE zips (

location VARCHAR(20) NOT NULL,

zipcode INTEGER,

in_district BOOLEAN DEFAULT False,

PRIMARY KEY (location),

UNIQUE (location, zipcode)
);

DROP TABLE [IF EXISTS] <relation name>;
ALTER TABLE zips

ADD avg_pop REAL,

DROP in_district;

CREATE TABLE cast_info (
person_id INTEGER,
movie_id INTEGER,
FOREIGN KEY (person_id) REFERENCES actors (id)
ON DELETE SET NULL ON UPDATE CASCADE,
FOREIGN KEY (movie_id) REFERENCES movies(id) ON DELETE SET NULL

);

Page 2 of 4

DaATtA 101/INFO 258 SPRING 2025 MipTERM Exam Exam Reference Packet

2 PostgreSQL String Utilities

String utility functions:
« string || string — text (concatenation)
o SUBSTRING(string FROM start) — text
o SUBSTRING(string FROM re_pattern) — text
o SUBSTR(string, count) — text

« REPLACE(source, pattern, replacement) — text
In REPLACE pattern operates similar to LIKE, not a regular expression.

o REGEXP_REPLACE(source, re_pattern, replacement, flags) — text
Note: flags must be 'g"' to execute a global match replacing all instances.

« SQL supports matching strings using two different types of pattern matching: SQL-style
LIKE patterns, and POSIX Regular Expressions.

o string LIKE pattern — boolean
« string ~ re_pattern — boolean
Examples:

'Hello' || 'World' » 'HelloWorld'
STRPOS('Hello', 'el') - 2
SUBSTRING('Thomas' FROM 3) »> 'omas'
SUBSTRING('Hello', 2, 3) > 'ell'
SUBSTR('Hello World', 7) -» ‘World’

See the next page for Section 7: SQL Pattern Matching, which includes regular expressions.

Page 3 of 4

DaATtA 101/INFO 258 SPRING 2025 MipTERM Exam Exam Reference Packet

3 SQL Pattern Matching

3.1 LIKE Patterns

SQL’s LIKE, and REPLACE functions operate using a simplified pattern syntax.

abc' LIKE 'abc' - true 'abc' LIKE '_b_' » true
abc' LIKE 'a%' - true 'abc' LIKE 'c' > false
REPLACE('Hello World', 'l', 'L') » 'HelLLo WorLd'

If pattern does not contain percent signs (%) or underscores (_), then the pattern only represents
the string itself; in that case LIKE acts like the equals operator. An underscore in pattern stands for
(matches) any single character; a percent sign matches any sequence of zero or more characters.

3.2 Regular Expressions

This is an abbreviated reference which may prove helpful. The functions ~, REGEXP_REPLACE,
and SUBSTRING accept re_pattern arguments which are regular expressions.

Escapes Shorthand used in a match
\d matches any digit
\s matches any white space character
\w matches any word character

Constraints Used at the beginning or end of a match

A matches at the beginning of the string
$ matches at the end of the string

Quantifier Used after a match section

oo
w

a sequence of 0 or more matches of the atom
+ a sequence of 1 or more matches of the atom
? a sequence of 0 or 1 matches of the atom
{m} a sequence of exactly m matches of the atom
{m,} a sequence of m or more matches of the atom
{m,n} a sequence of m through n (inclusive) matches of the atom; m cannot exceed n

'abcd' ~ 'a.c'
'abcd' ~ 'a.*d'
'abed' ~ "(b|x)'

true dot matches any character

true * repeats the preceding pattern item
true | means OR, parentheses group

'abcd' ~ '4a' true A anchors to start of string

'abcd' ~ "A(b|c)’ false

substring('foobar' from 'o.b') > 'oob'

substring(' foobar' from 'o(.)b') - 'o
substring('Thomas' from '...\$') - 'mas'
regexp_replace('foobarbaz', 'b..', 'X") > '"fooXbaz'
regexp_replace('foobarbaz', 'b..', 'X', 'g") > "fooXX'
regexp_replace('Hello World', '[aeiou]', '-', 'g') -» 'H-11- W-rld'

N2 N 2N

N

Page 4 of 4

