Lecture 07¶

In [1]:
# Run this cell to set up imports
import numpy as np
import pandas as pd
In [2]:
%reload_ext sql
There's a new jupysql version available (0.10.1), you're running 0.10.0. To upgrade: pip install jupysql --upgrade
In [3]:
%sql postgresql://127.0.0.1:5432/postgres

New IMDB Performance database¶

This is a variation of the IMDB database with keys defined. Note that this is a pretty big database! So if you run the below lines, please also remember to delete the imdb_perf_lecture afterwards to save space on your limited postgreSQL server.

In [4]:
!unzip -u data/imdb_perf_lecture.zip -d data/
Archive:  data/imdb_perf_lecture.zip
  inflating: data/imdb_perf_lecture.sql  
In [6]:
!psql -h localhost -c 'DROP DATABASE IF EXISTS imdb_perf_lecture'
!psql -h localhost -c 'CREATE DATABASE imdb_perf_lecture' 
!psql -h localhost -d imdb_perf_lecture -f data/imdb_perf_lecture.sql
NOTICE:  database "imdb_perf_lecture" does not exist, skipping
DROP DATABASE
CREATE DATABASE
SET
SET
SET
SET
SET
 set_config 
------------
 
(1 row)

SET
SET
SET
SET
SET
SET
CREATE TABLE
psql:data/imdb_perf_lecture.sql:33: ERROR:  role "yanlisa" does not exist
CREATE TABLE
psql:data/imdb_perf_lecture.sql:45: ERROR:  role "yanlisa" does not exist
CREATE TABLE
psql:data/imdb_perf_lecture.sql:59: ERROR:  role "yanlisa" does not exist
COPY 845888
COPY 2211936
COPY 656453
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE

Display indexes¶

In [7]:
%reload_ext sql
In [8]:
%sql postgresql://127.0.0.1:5432/imdb_perf_lecture
Connecting and switching to connection postgresql://127.0.0.1:5432/imdb_perf_lecture

The meta-command \d <relation> shows indexes maintained with the <relation> table.

To run a SQL command, you can also look in the system view pg_indexes (documentation 54.11):

In [9]:
%%sql
SELECT *
FROM pg_indexes
WHERE schemaname = 'public';
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
2 rows affected.
Out[9]:
schemaname tablename indexname tablespace indexdef
public actor actor_pkey None CREATE UNIQUE INDEX actor_pkey ON public.actor USING btree (id)
public movie movie_pkey None CREATE UNIQUE INDEX movie_pkey ON public.movie USING btree (id)

Read the indexdef as: the Actor relation has an index named actor_pkey which is created on the attribute id. In this case, the attribute id is also the primary key of the Actor relation, hence why it has an index. More on why primary keys automatically generate indexes in a bit.

EXPLAIN ANALYZE¶

This query seems like it runs pretty quickly:

In [10]:
%%sql
SELECT * FROM Actor WHERE id = 23456;
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
1 rows affected.
Out[10]:
id name
23456 Geraldo Alves

The PostgreSQL command EXPLAIN ANALYZE runs the execution plan of a statement and displays actual run time statistics. This is useful to understand what the query is actually doing.

In [11]:
%%sql
EXPLAIN ANALYZE SELECT * FROM Actor WHERE id = 23456;
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
4 rows affected.
Out[11]:
QUERY PLAN
Index Scan using actor_pkey on actor (cost=0.42..8.44 rows=1 width=36) (actual time=0.023..0.025 rows=1 loops=1)
  Index Cond: (id = 23456)
Planning Time: 0.061 ms
Execution Time: 0.038 ms

By contrast, the below query on Crew_info runs quite slowly. Why?

In [12]:
%%sql
EXPLAIN ANALYZE SELECT * FROM Cast_info WHERE person_id = 23456;
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
8 rows affected.
Out[12]:
QUERY PLAN
Gather (cost=1000.00..23415.29 rows=11060 width=8) (actual time=128.227..131.074 rows=3 loops=1)
  Workers Planned: 2
  Workers Launched: 2
  -> Parallel Seq Scan on cast_info (cost=0.00..21309.29 rows=4608 width=8) (actual time=49.135..125.255 rows=1 loops=3)
        Filter: (person_id = 23456)
        Rows Removed by Filter: 737311
Planning Time: 0.075 ms
Execution Time: 131.100 ms

Explanation:

Run \d on Cast_info and Actor. Cast_info does not have an index on movie_id!

imdb_perf_lecture=# \d Actor
               Table "public.actor"
 Column |  Type   | Collation | Nullable | Default 
--------+---------+-----------+----------+---------
 id     | integer |           | not null | 
 name   | text    |           |          | 
Indexes:
    "actor_pkey" PRIMARY KEY, btree (id)
Referenced by:
    TABLE "cast_info" CONSTRAINT "cast_info_person_id_fkey" FOREIGN KEY (person_id) REFERENCES actor(id)


imdb_perf_lecture=# \d cast_info
               Table "public.cast_info"
  Column   |  Type   | Collation | Nullable | Default 
-----------+---------+-----------+----------+---------
 person_id | integer |           |          | 
 movie_id  | integer |           |          | 
Foreign-key constraints:
    "cast_info_movie_id_fkey" FOREIGN KEY (movie_id) REFERENCES movie(id)
    "cast_info_person_id_fkey" FOREIGN KEY (person_id) REFERENCES actor(id)

Creating new Indexes¶

In the Actor table, name is not a primary key. What kind of scan do you think the following query will produce?

In [13]:
%sql EXPLAIN ANALYZE SELECT * FROM Actor WHERE name = 'Tom Hanks';
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
8 rows affected.
Out[13]:
QUERY PLAN
Gather (cost=1000.00..11054.57 rows=4229 width=36) (actual time=0.363..31.063 rows=1 loops=1)
  Workers Planned: 2
  Workers Launched: 2
  -> Parallel Seq Scan on actor (cost=0.00..9631.67 rows=1762 width=36) (actual time=16.255..25.548 rows=0 loops=3)
        Filter: (name = 'Tom Hanks'::text)
        Rows Removed by Filter: 281962
Planning Time: 0.077 ms
Execution Time: 31.080 ms

We can manually create an index, even if it's not a primary key. Below, we create a multi-dimensional index just to show you the syntax:

In [14]:
%sql CREATE INDEX nameIdIndex ON Actor(name,id);
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
Out[14]:

This makes our original query much faster:

In [15]:
%sql EXPLAIN ANALYZE SELECT * FROM Actor WHERE name = 'Tom Hanks';
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
7 rows affected.
Out[15]:
QUERY PLAN
Bitmap Heap Scan on actor (cost=113.20..5353.56 rows=4229 width=36) (actual time=0.063..0.064 rows=1 loops=1)
  Recheck Cond: (name = 'Tom Hanks'::text)
  Heap Blocks: exact=1
  -> Bitmap Index Scan on nameidindex (cost=0.00..112.14 rows=4229 width=0) (actual time=0.049..0.049 rows=1 loops=1)
        Index Cond: (name = 'Tom Hanks'::text)
Planning Time: 0.220 ms
Execution Time: 0.085 ms

Why "Index Only" Scan? Well, SQL correctly identified that there are only two attributes in the Actor table, and both are located in the index. So we just need to search the index; we don't need to additionally fetch any records.

Exercise: Types of Scans¶

SQL automatically decides whether index scans are worth it. Sometimes, it decides to do a sequential scan instead, or even a bitmap heap scan.


The below exact match lookup produces an Index Scan:

In [16]:
%sql EXPLAIN ANALYZE SELECT * FROM Actor WHERE id = 23456;
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
4 rows affected.
Out[16]:
QUERY PLAN
Index Scan using actor_pkey on actor (cost=0.42..8.44 rows=1 width=36) (actual time=0.014..0.015 rows=1 loops=1)
  Index Cond: (id = 23456)
Planning Time: 0.057 ms
Execution Time: 0.028 ms

This range lookup also produces an Index Scan:

In [17]:
%sql EXPLAIN ANALYZE SELECT * FROM Actor WHERE 23456 <= id AND id < 23500;
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
7 rows affected.
Out[17]:
QUERY PLAN
Bitmap Heap Scan on actor (cost=91.77..5342.70 rows=4229 width=36) (actual time=0.010..0.011 rows=11 loops=1)
  Recheck Cond: ((23456 <= id) AND (id < 23500))
  Heap Blocks: exact=1
  -> Bitmap Index Scan on actor_pkey (cost=0.00..90.71 rows=4229 width=0) (actual time=0.007..0.008 rows=11 loops=1)
        Index Cond: ((id >= 23456) AND (id < 23500))
Planning Time: 0.090 ms
Execution Time: 0.028 ms

However, the below range lookup produces a Sequential scan!

In [18]:
%sql EXPLAIN ANALYZE SELECT * FROM Actor WHERE id >= 23456;
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
7 rows affected.
Out[18]:
QUERY PLAN
Bitmap Heap Scan on actor (cost=5285.64..14036.18 rows=281963 width=36) (actual time=54.562..160.858 rows=838028 loops=1)
  Recheck Cond: (id >= 23456)
  Heap Blocks: exact=5180
  -> Bitmap Index Scan on actor_pkey (cost=0.00..5215.15 rows=281963 width=0) (actual time=53.896..53.897 rows=838028 loops=1)
        Index Cond: (id >= 23456)
Planning Time: 0.068 ms
Execution Time: 184.688 ms

And this other range lookup produces a Bitmap Heap Scan??

In [19]:
%sql EXPLAIN ANALYZE SELECT * FROM Actor WHERE id < 23457;
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
7 rows affected.
Out[19]:
QUERY PLAN
Bitmap Heap Scan on actor (cost=5285.64..14036.18 rows=281963 width=36) (actual time=0.656..1.815 rows=7861 loops=1)
  Recheck Cond: (id < 23457)
  Heap Blocks: exact=49
  -> Bitmap Index Scan on actor_pkey (cost=0.00..5215.15 rows=281963 width=0) (actual time=0.635..0.635 rows=7861 loops=1)
        Index Cond: (id < 23457)
Planning Time: 0.076 ms
Execution Time: 2.075 ms
  • Index scan:
    • For each index key match, there is a page fetch.
    • If multiple index key matches all correspond to a single page, that single page may get fetched multiple times.matches on our query.
  • Sequential scan:
    • Once each page is loaded in, all records on that page are scanned in sequence.
  • Bitmap heap scan:
    • Pre-scans the index to identify the unique pages to visit, then sequentially scans the subset of pages
    • More here: stackoverflow





Takeaway:

  • There is no guarantee that records in memory are sorted in the same way as records in the index.
  • Therefore index lookups are effectively random lookups! Many random lookups are typically more expensive than many sequential lookups!


Other range lookups for your practice:
In [20]:
%sql EXPLAIN ANALYZE SELECT * FROM Actor WHERE id >= 23456 AND id < 23500;
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
7 rows affected.
Out[20]:
QUERY PLAN
Bitmap Heap Scan on actor (cost=91.77..5342.70 rows=4229 width=36) (actual time=0.020..0.021 rows=11 loops=1)
  Recheck Cond: ((id >= 23456) AND (id < 23500))
  Heap Blocks: exact=1
  -> Bitmap Index Scan on actor_pkey (cost=0.00..90.71 rows=4229 width=0) (actual time=0.015..0.015 rows=11 loops=1)
        Index Cond: ((id >= 23456) AND (id < 23500))
Planning Time: 0.068 ms
Execution Time: 0.040 ms
In [21]:
%sql EXPLAIN ANALYZE SELECT * FROM Actor WHERE id >= 23456 AND id < 23457;
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
7 rows affected.
Out[21]:
QUERY PLAN
Bitmap Heap Scan on actor (cost=91.77..5342.70 rows=4229 width=36) (actual time=0.023..0.024 rows=1 loops=1)
  Recheck Cond: ((id >= 23456) AND (id < 23457))
  Heap Blocks: exact=1
  -> Bitmap Index Scan on actor_pkey (cost=0.00..90.71 rows=4229 width=0) (actual time=0.017..0.017 rows=1 loops=1)
        Index Cond: ((id >= 23456) AND (id < 23457))
Planning Time: 0.099 ms
Execution Time: 0.050 ms
In [22]:
%sql EXPLAIN ANALYZE SELECT * FROM Actor WHERE id >= 23456 OR id < 23457;
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
4 rows affected.
Out[22]:
QUERY PLAN
Seq Scan on actor (cost=0.00..17914.32 rows=469938 width=36) (actual time=0.010..79.188 rows=845888 loops=1)
  Filter: ((id >= 23456) OR (id < 23457))
Planning Time: 0.062 ms
Execution Time: 103.337 ms

Cleanup¶

We drop the newly created index just to clean things up:

In [23]:
%sql DROP INDEX idNameIndex;
Running query in 'postgresql://127.0.0.1:5432/imdb_perf_lecture'
RuntimeError: (psycopg2.errors.UndefinedObject) index "idnameindex" does not exist

[SQL: DROP INDEX idNameIndex;]
(Background on this error at: https://sqlalche.me/e/20/f405)
If you need help solving this issue, send us a message: https://ploomber.io/community

And we close the connection, then drop the database:

In [ ]:
%sql --close postgresql://127.0.0.1:5432/imdb_perf_lecture
In [ ]:
!psql -h localhost -c 'DROP DATABASE IF EXISTS imdb_perf_lecture'